- 相关推荐
《分数与除法的关系》新人教版五年级数学下册第教案
教学目标:
使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力。
教学重点:分数的数感培养,以及与除法的联系。
教学难点:抽象思维的培养。
教学课型:新授课
教具准备:课件
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:A,7/8是什么数它表示什么
B,7÷8是什么运算它又表示什么
C,你发现7/8和7÷8之间有联系吗
2,揭示课题。
述:它们之间究竟有怎样的关系呢这节课我们就来研究"分数与除法的关系"。
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学P90 。例2:把1米长的钢管平均截成3段,每段长多少
提问:A,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0。333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米。
B,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系。)
板书: 1÷3= 1/3
C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学P90 。例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
B,同理,把3块饼平均分给4个孩子,每个孩子分得多少怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法。
提问:A,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块。)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块。)
B,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少说一说自己的分法和想法。
3,小结提问:A,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
B,你能举几个用分数表示整数除法的商的例子吗
C,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
D,b为什么不能等于0
4, 看书P91 深化。
反馈:说一说分数和除法之间和什么联系又有什么区别
板书:分数是一个数,除法是一种运算。
三,巩固练习 [课件5]
1,用分数表示下面各式的商。
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算。
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数。1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数。
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母。故此,分数与除法既有联系,又有区别。
在整数除法中零不能作除数,那么,分数的分母也不能是零。
五,家作
P93 、1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0。333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算。
【《分数与除法的关系》五年级数学下册第教案】相关文章:
分数与除法的关系教案范文10-07
分数与除法的关系的应用教学教案10-08
分数与除法的关系公开课教案10-07
数学《分数除法》教案范例10-01
五年级数学下册《分数除法》教案设计10-09
分数除法教案10-05
分数与除法教案12-15
《分数除法》教案02-23
分数除法教案02-07