教案

初中数学教案

时间:2022-12-29 16:01:01 教案 我要投稿

人教版初中数学教案

  作为一名优秀的教育工作者,编写教案是必不可少的,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么什么样的教案才是好的呢?下面是小编为大家整理的人教版初中数学教案,希望对大家有所帮助。

人教版初中数学教案

人教版初中数学教案1

  一、新授

  利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

  在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

  100t+120(t-0.5)千米①

  冻土地段与非冻土地段相差

  100t-120(t-0.5)千米②

  上面的式子①、②都带有括号,它们应如何化简?

  思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

  利用分配律,可以去括号,合并同类项,得:

  100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

  100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

  我们知道,化简带有括号的整式,首先应先去括号.

  上面两式去括号部分变形分别为:

  +120(t-0.5)=+120t-60③

  -120(t-0.5)=-120+60④

  比较③、④两式,你能发现去括号时符号变化的规律吗?

  思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

  利用分配律,可以将式子中的.括号去掉,得:

  +(x-3)=x-3(括号没了,括号内的每一项都没有变号)

  -(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

  去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

  二、范例学习

  例1.化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

  解答过程按课本,可由学生口述,教师板书.

  例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

  (1)2小时后两船相距多远?

  (2)2小时后甲船比乙船多航行多少千米?

  教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

  思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

  解答过程按课本.

  去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

  三、巩固练习

  1.课本第68页练习1、2题.

  2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

  思路点拨:一般地,先去小括号,再去中括号.

  四、课堂小结

  去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

  五、作业布置

  1.课本第71页习题2.2第2、3、5、8题.

  2.选用课时作业设计.

人教版初中数学教案2

  教学目标:

  1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.

  2.理解对顶角相等,并能运用它解决一些问题.

  重点:

  邻补角、对顶角的概念,对顶角的性质与应用.

  难点:

  理解对顶角相等的性质的探索.

  教学过程:

  一、创设情境,引入新课

  引导语:

  我们生活的世界中,蕴涵着大量的相交线和平行线.

  本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.

  二、尝试活动,探索新知

  教师出示一块布片和一把剪刀,表演剪刀剪布的过程.

  教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?

  学生观察、思考、回答,得出:

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的.角逐渐变大,剪刀刀刃之间的角也相应变大.

  教师提问:我们可以把剪刀抽象成什么简单的图形?

  学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.

  教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)

  学生根据观察和度量完成下表:

  两条直线相交、所形成的角、分类、位置关系、数量关系

  教师提问:

  如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?

  学生思考回答:

  只会改变数量关系而不会改变位置关系.

  师生共同定义邻补角、对顶角:

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

  如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.

  教师提问:

  你同意下列说法吗?如果错误,如何订正?

  1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.

  2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.

  3.邻补角是互补的两个角,互补的两个角也是邻补角.

  学生思考回答:1、2是对的,3是错的.

  第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.

  教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.

  教师把说理过程规范地板书:

  在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.

  教师板书对顶角的性质:

  对顶角相等.

  强调对顶角的概念与对顶角的性质不能混淆:

  对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

  三、例题讲解

  【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

  【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.

  四、巩固练习

  1.判断下列图中是否存在对顶角.

  2.按要求完成下列各题.

  (1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.

  eq o(sup7(,图(1)) ,图(2))

  (2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何?

  【答案】

  1.都不存在对顶角.

  2.(1)对顶角,邻补角.

  对顶角:∠AOC和∠BOD,∠AOD和∠BOC.

  邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.

  (2)垂直.

  五、课堂小结

  教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

  教学反思

  通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。

人教版初中数学教案3

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  重点难点:

  能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学过程:

  一、试一试

  1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

  2.x的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

  对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的.变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

  二、提出问题

  某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

  1.商品的利润与售价、进价以及销售量之间有什么关系?

  [利润=(售价-进价)×销售量]

  2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

  售约多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

  [x的值不能任意取,其范围是0≤x≤2]

  5.若设该商品每天的利润为y元,求y与x的函数关系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  将函数关系式y=x(20-2x)(0 <x <10=化为:

  y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、观察;概括

  1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

  (1)函数关系式(1)和(2)的自变量各有几个?

  (各有1个)

  (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

  (3)函数关系式(1)和(2)有什么共同特点?

  (都是用自变量的二次多项式来表示的)

  (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

  2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  四、课堂练习

  1.(口答)下列函数中,哪些是二次函数?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3练习第1,2题。

  五、小结

  1.请叙述二次函数的定义.

  2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

  六、作业:略

人教版初中数学教案4

  教学目标:

  1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

  2、过程与方法:通过观察,归纳一元一次方程的概念。

  3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。

  教学重点:

  归纳一元次方程的概念

  教学难点:

  感受方程作为刻画现实世界有效模型的意义.

  教学过程:

  一、情景导入:

  我能猜出你们的年龄,相信吗?

  只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.

  问:你的年龄乘以2加3等于多少?

  学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?

  学生讨论并回答

  二、知识探究:

  1、方程的教学(投影演示)

  小彬和小明也在进行猜年龄游戏,我们来看一看。

  找出这道题中的等量关系,列出方程.

  大家观察,这两个式子有什么特点。

  讨论并回答:什么是方程?方程有哪些特点?

  2、 判断下列式子是不是方程?

  (1)X+2=3(是)(2)X+3Y=6(是)

  (3)3M-6(不是)(4)1+2=3(不是)

  (5)X+3>5(不是)(6)Y-12=5(是)

  三、合作交流

  1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)

  情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?

  你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?

  情景二:第五次全国人口普查统计数据(20__年3月28日新华社公布)

  截至20__年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%

  1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?

  下面是刚才根据几道情景题所列的`方程,分析下列方程有何共同点?

  2X–5=21

  40+15X=100

  X(1+153.94﹪)=3611

  2[X+(X+12)]=200

  2[Y+(Y–12)]=200

  在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。

  问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?

  生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程

  四、随堂练习

  1、投影趣味习题,

  2、做一做

  下面有两道题,请选做一题。

  (1)、请根据方程2X+3=21自己设计一道有实际背景的应用题。

  (2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。

  五、课堂小节

  1、这节课你学到了什么?

  2、这节课给你印象最深的是什么?

  六、作业:

  分组布置

【初中数学教案】相关文章:

初中数学教案04-01

初中数学教案评语09-02

初中数学教案人教版03-20

初中数学教案优秀03-21

人教版初中数学教案大全05-26

初中数学教案14篇03-26

初中数学教案15篇12-30

初中数学教案(15篇)02-04

初中七年级数学教案03-20