七年级数学上册人教版教案
作为一名教学工作者,可能需要进行教案编写工作,借助教案可以让教学工作更科学化。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的七年级数学上册人教版教案,仅供参考,大家一起来看看吧。
七年级数学上册人教版教案1
【学习目标】:
1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念
【教学过程】:
一、知识链接:
1、小学里学过哪些数请写出来:
2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
(3)阅读P2的内容
3、正数、负数的概念
1)大于0的.数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:
1. P3第1,2题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54
则正数有_____________________;负数有____________________。
4.下列结论中正确的是 ????????????????( )
A.0既是正数,又是负数
C.0是最大的负数
【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做 ,小于0的数叫做 。
(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【拓展训练】:
1.零下15℃,表示为_________,比O℃低4℃的温度是_________。
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,
其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________。
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
【课后作业】P5第1、2题
七年级数学上册人教版教案2
教学内容:
小学数学六年级下册P112-113练习二十二1~7题。
教学目标:
1.通过练习,进一步掌握统计与概率的相关知识。
2.能解决统计与概率相关的简单实际问题。
3.感受数学与生活的紧密联系,提高学习数学的兴趣和学好数学的自信心。
重点、难点:
1.掌握统计与概率的基本知识和方法。
2.灵活应用统计与概率的相关知识解决实际问题。
教学准备:
教学挂图,小黑板,自主检测题等。
教学过程
一、情境引入,回顾再现
1.回顾统计与概率的相关知识。
组织学生简单回忆,说一说:
本单元学习了统计图,统计表;平均数,中位数,众数;以及游戏公平,可能性等概率问题。
2.揭示课题。
师:那么这节课我们就来对本部分知识进行练习。
板书课题:统计与概率练习
二、分层练习,强化提高
(一)基本练习。
1.
(1)该公司去年全年的销售情况如何?
(2)该公司的发展前景怎样?
(3)你还能提出哪些问题?
①组织学生独立解答.
②汇报订正,说解题思路。
教师引导学生从图中的变化趋势上来分析问题,从而得出结论:该公司去年总体经营情况很好,产量和销量不断增长,第四季度增长幅度较快,而且出现了销量大于产量的良好势头。由此可以作出预测:该公司在未来的一段时间内将有良好的发展。
2.
①组织学生独立解答.
②汇报订正,说解题思路
教师注意提醒学生考虑事件发生的等可能性以及几率的多少。
(二)综合练习。
①组织学生独立解答第一小题。
②小组交流讨论,解答第二小题。
师根据学生的汇报,让学生明确在研究一组数据的分布情况时,用平均数、中位数或众数作为数据的代表都是可以的。但是在一般情况下,用平均数作为数据代表的时候较多,它与这组数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减少这种影响,在评分时就采取去掉一个分和一个最低分,再计算平均数,这样做是合理的。
①组织学生独立思考。
②小组交流讨论,汇报结果。
本题是有关众数的`应用的练习。从进货和销售数量的差来看,尺码是35、37、39三种型号的鞋进货有些多了,下一次进货时可考虑适当降低数量;但从销量来看,37码的鞋仍然排名第一,36和38码的列第二、三名,所以每种型号的鞋的进货量的比例总体上不会有大的变化。研究一组数据的频数大小分布情况时,应用了众数的知识。
(三)提高练习。
①组织学生独立思考。
②小组交流讨论,汇报结果。
六(2)班同学的血型情况如图,
(1)从图中你能得到哪些信息?
(2)该班有50人,各种血型有多少人?
本题是有关可能性的习题,对简单事件发生的可能性作出预测。从两队的历史战绩来看,各是两胜一平两负,不相上下;从这一点来判断,两队获胜的可能性都是二分之一。但是,仔细观察可以发现:在离比赛日最近的两场比赛中均是乙队获胜,说明最近乙队的状态好于甲队,由此可以预测:乙队获胜的可能性稍大一些。这种判断也有一定道理。
三、自主检测,评价完善
自主检测
1.填空:
(1)人们对收集的统计数据经过分析整理后可以制成( )还可以制成( )
(2)( )统计图可以清楚地表示出各部分同总数之间的关系。
(3)( )统计图既能表示出数量的多少,又能反映出数量变化情况
2.选择:
(1)评价一个班整体学习成绩情况,看( )比较合适?
A.平均数B.中位数C.众数
(2)为了清楚地表示出20xx年各月平均气温变化情况,应绘制( )。
A.条形B.折线C.扇形
3.做一做:
有A—J 10张字母卡片,小明翻字母卡片,小红猜小明的字母卡片,如果小红猜对,小红获胜,如果小红猜错了,小明获胜。
(1)你认为这个游戏规则对双方公平吗?对谁有利?
(2)请设计一个双方公平的游戏规则。
四、课堂总结
1.教师评价:通过本节课的练习大都分同学掌握较好,值得表扬。
2.学生谈收获:通过本节课练习你有什么新的收获?
板书设计:
统计与概率练习
统计表
统计图:条形统计图;折线统计图;扇形统计图
统计量:平均数;中位数;众数
可能性:等可能;公平;
作业设计
基础:
1.简单的统计图有( )统计图、( )统计图和( )统计图。
2.( )统计图是用长短不同、宽窄一致的直条表示数量,从图上很容易看出( )。
3. 4、7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1这组数据的众数是( ),中位数是( ),平均数是( )。
4.在一组数据中,( )只有一个,有时( )不止一个,也可能没有( )。(填众数或中位数)
七年级数学上册人教版教案3
学习目标
1.掌握多项式、多项式的项及其次数,常数项的概念。
2.确定一个多项式的项、项数和次数。
3.由单项式与多项式归纳出整式概念。
4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。
重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。
难点:多项式的次数。
学法指导
从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。
《2.1.3多项式》同步四维训练含答案
新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:
(1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);
(2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的'高度.
《2.1.2多项式》课时练习含答案
1.下列说法中正确的是( )
A.多项式ax2+bx+c是二次多项式
B.四次多项式是指多项式中各项均为四次单项式
C.-ab2,-x都是单项式,也都是整式
D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项
2.如果一个多项式是五次多项式,那么它任何一项的次数( )
A.都小于5 B.都等于5
C.都不小于5 D.都不大于5
3.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是( )
A.a10+b19 B.a10-b19
C.a10-b17 D.a10-b21
4.若xn-2+x3+1是五次多项式,则n的值是( )
A.3 B.5 C.7 D.0
5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有.(填序号)
6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.
7.多项式的二次项系数是.
8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?
9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.
10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.
(1)请把游戏最后丁所报出的答案用整式的形式描述出来;
(2)若甲取的数为19,则丁报出的答案是多少?
七年级数学上册人教版教案4
【知识与技能】
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.
2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.
【过程与方法】
通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.
【情感态度】
通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.
【教学重点】
理解算术平方根的概念.
【教学难点】
根据算术平方根的概念正确求出非负数的算术平方根.
一、情境导入,初步认识
教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.
问题1求出下列各数的平方.
1,0,(-1),-1/3,3,1/2.
问题2下列各数分别是某实数的平方,请求出某实数.
25,0,4,4/25,1/144,-1/4,1.69.
对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.
由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.
22=4,(-2) =4,故平方为4的数为2或-2.
问题3学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?
分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.
《6.1.2平方根》课堂练习题
2.(绵阳中考)±2是4的(A)
A.平方根B.相反数
C.绝对值D.算术平方根
3.下面说法中不正确的是(D)
A.6是36的平方根B.-6是36的'平方根
C.36的平方根是±6 D.36的平方根是6
4.下列说法正确的是(D)
A.任何非负数都有两个平方根
B.一个正数的平方根仍然是正数
C.只有正数才有平方根
D.负数没有平方根
《6.1平方根》课时练习含答案
15.下面说法正确的是( )
A.4是2的平方根
B.2是4的算术平方根
C.0的算术平方根不存在
D.-1的平方的算术平方根是-1
答案:B
知识点:平方根;算术平方根
解析:
解答:A、4不是2的平方根,故本选项错误;
B、2是4的算术平方根,故本选项正确;
C、0的算术平方根是0,故本选项错误;
D、-1的平方为1,1的算术平方根为1,故本选项错误.
故选B.
分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.
七年级数学上册人教版教案5
教学目标和要求:
1.理解单项式及单项式系数、次数的概念.
2.会准确迅速地确定一个单项式的系数和次数.
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难点:单项式概念的建立.
教学过程:
一、复习引入:
1、列代数式
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)
2、请学生说出所列代数式的意义.
3、请学生观察所列代数式包含哪些运算,有何共同运算特征.
由小组讨论后,经小组推荐人员回答,教师适当点拨.
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,
如a,5.
2.练习:判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以
四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.
单项式的系数:单项式中的数字因数叫做这个单项式的系数.
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4.例题:
例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1;②;③πr2;④-a2b
答:①不是,因为原代数式中出现了加法运算;
②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;
④是,它的系数是-,次数是3.
例2:下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是.
答:①错,应是?7;②错;?x2y3系数为?1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3=5;⑥正确
强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关.
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)
三、课堂小结:
①单项式及单项式的`系数、次数.
②根据教学过程反馈的信息对出现的问题有针对性地进行小结.
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.
教学后记:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.
七年级数学上册人教版教案6
教学目标和要求:
1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.
2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.
3.初步体会类比和逆向思维的数学思想.
教学重点和难点:
重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.
难点:多项式的次数.
教学过程:
一、复习引入:
观察以上所得出的四个代数式与上节课所学单项式有何区别.
(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)
二、讲授新课:
1.多项式:
由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constantterm).例如,多项式3x2?2x+5有三项,它们是3x2,-2x,5.其中5是常数项.
一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2?2x+5是一个二次三项式.
注意:
(1)多项式的次数不是所有项的次数之和;
(2)多项式的每一项都包括它前面的符号.
(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.)
2.例题:
例1:判断:
①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;
②多项式3n4-2n2+1的次数为4,常数项为1.
(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数.)
例2:指出下列多项式的项和次数:
(1)3x-1+3x2;(2)4x3+2x-2y2.
解:(1)三项,二次;(2)三项,三次.
例3:指出下列多项式是几次几项式.
(1)x3-x+1;(2)x3-2x2y2+3y2.
解:(1)三次三项式;(2)四次三次式.
例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的`条件.
解:该多项式中的项次数分别为n、1和常数,又多项式为三次,即n=3;而该多项式至少有两项3xn和1,当m?1≠0时,该多项式即为三项式,与已知不符,所以m=1.
(让学生口答例2、例3,老师在黑板上规范书写格式.讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式(integralexpression).例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.)
三、课堂小结:
①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.
②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.(让学生小结,师生进行补充.)
教学后记:
从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点.掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性.最后列举几个例子,与学生一起完成.教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成.要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识.
七年级数学上册人教版教案7
教学内容:
人教版小学数学教材六年级下册第107页例1及相关练习。
教学目标:
1.体会数与形的联系,进一步积累数形结合数学活动经验,培养学生数形结合的数学思想意识。
2.体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力。
3.在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本的数学思想。
重点难点:
积累数形结合数学活动经验,体验数学思想方法的价值,激发兴趣。
教学准备:
课件,不同颜色的小正方形。
学具准备:
不同颜色的小正方形,吸铁板,作业纸。
教学过程:
一、谈话导入,出示课题
教师:最近老师发现,我有一项非常神奇的本领。什么本领呢?我发现只要从1开始的连续奇数相加,比如,1+3,1+3+5……像这样的算式,我都算得特别快。你们信吗?
教师:不信也没关系,我们现场来比一比。
师生比赛,看谁算得快。
教师:这个方法快吗?你们想不想也像老师一样算得快呢?
教师:老师给你们一点点提示,我是借助图形发现这个方法的,今天这节课我们就来研究──数与形(板书)。
【设计意图】从谈话导入,通过设置悬念,激发学生学习兴趣,从而顺理成章地引出课题。
二、动手实践,以形解数
1.教师:我先根据算式中的加数拿出若干个图形。比如,1+3,我就先拿一个小正方形,再拿三个小正方形(贴在黑板上),我发现这些数量的小正方形刚好可以拼成一个大正方形,那我就把它们拼成一个大的正方形。
教师:接着,我观察图形和算式之间的关系,就发现了可以快速算得结果的方法,你们想不想自己试试看?
教师:先来两个加数的,再来三个加数的。请同学们在小组内先完成第一步,再完成第二步,看看哪个小组最先发现老师的方法。
2.小组动手操作,教师巡视。
3.学生汇报,全班交流分析。
先讨论1+3,再讨论1+3+5。
教师:根据同学们的汇报,大家认为1+3=22,1+3+5=32。除了这两组同学的汇报,你们还有其他发现吗?
学生:算式中加数的个数是几,和就等于几的平方。
教师:你们认同他的方法吗?能不能举个具体的'例子来说一说?
学生1:1+3+5+7+9=52。
学生2:1+3+5+7+9+11=62。
教师:那我们从头来看一看。请看屏幕:1+3+5+7+9=(52)。
教师:一个小正方形可以看成12,想要拼成一个更大的正方形,再增加1个是不够的,增加的个数要比前一个加数再多2(也就是3);想拼成更大的正方形,再增加3个是不够的,还要比3个再多2个(也就是5个),此时是1+3+5;再往下去,要加7才能拼成更大的正方形,依此类推,加到了9,就能排成每行、每列的个数是5的大正方形。
教师:那看来只要是1开始的,连续的奇数相加,就能排成每行、每列个数是几的大正方形,和也就是几的平方。
4.练习。
(1)1+3+5+7+9=( )2;
1+3+5+7+9+11+13=( )2;
____________________________=92。
教师请学生独立完成,然后全班核对答案。
(2)利用规律,算一算。
1+3+5+7+5+3+1=( );
1+3+5+7+9+11+13+11+9+7+5+3+1=( )。
全班交流,请学生说明计算结果和原因。
5.小结。
教师:我们同学都很细心,现在不但能很快算出从1开始的连续奇数的和,稍加一点变化,你们也照样算得很快。现在知道老师是用什么方法来快速计算这些题的吧?
教师:这么巧妙的方法,我们是借助什么发现的?(图形)。看来,有的计算问题借助图形解决会更容易。就像这个题一样,我们借助图形发现了更巧妙、更简便的方法。
【设计意图】充分让学生动手实践,感受如何将数和形结合,体会数和形之间的紧密联系,同时让学生感受到“形”可以展示“数”的特点,通过“形”使解决“数”的问题变得更加容易。
三、练习巩固
1.下面每个图中各有多少个红色小正方形和多少个蓝色小正方形?
学生回答,课件出示答案。
教师:请你认真思考、观察,上边的图形和对应的数之间有什么规律?四人小组交流。
教师:刚才有一个同学说,蓝色的小正方形顺次增加1个,红色的小正方形顺次增加2个。为什么蓝色的小正方形每次增加1个,而红色的小正方形每次增加2个呢?
教师:我们一起来看一看。第一个图形,若要增加1个蓝色小正方形,其上方、下方就要各增加1个红色小正方形;依此类推,第三个图形在第二个图形的基础上增加了1个蓝色小正方形,则红色小正方形就要增加几个?
教师:如果不让你看图,照这样画下去,第6个和第10个图形各有几个红色小正方形和蓝色小正方形呢?你能写出来吗?在草稿本上写一写。
教师请学生介绍,说说是怎么算出来的。
教师:观察发现,图形中左右两侧的红色小正方形个数固定不变(为6个),在中间部分,蓝色小正方形的个数乘以2就是红色小正方形的个数。即使在蓝色小正方形个数较多的情况下,仍然可以算得很快,看来图形问题确实也蕴涵着数的规律。找到了其中的规律,解决问题就清晰、容易多了。
2.课件出示教材第109页练习二十二第2题。
(1)教师:上方有图,下方有对应的数字,请你观察和思考,图和数之间有什么规律?小组交流一下。
全班交流。
学生:第2个图形中小圆的个数为1+2,第3个图形中小圆的个数为1+2+3,第4个图形中小圆的个数为1+2+3+4。
学生:是第几个图形,其中就有几行小圆。
教师:照这个规律往下画,你能画出来吗?图形下方的数字表示的是什么?第5个、第6个、第7个图形下方的数,你能不能很快写出来?
教师请学生独立完成在练习纸上。
教师请学生汇报,说说是怎么得到结果的。
教师:图形中的最后一行是第几行?含有几个小圆?
教师:现在如果老师不让你画图,你能不能想象一下第10个图形,它是什么样子的?一共有多少个小圆呢?现在我们就不画图,算一算,第10个图形下方的那个数是多少?能算出来吗?动笔试一试。
展示学生作品,请学生介绍方法。
(2)教师介绍“三角形数”“正方形数”。
教师:同学们发现没有,55个小圆能排成什么图形?(三角形)而且这个三角形的每一行的小圆的个数分别是从1到10。
教师:回过头来看看。3、6、10、15、21呢?它们是否也具有同样的特点?
教师:在数学上,我们把1、3、6、10、15、21、28这样的数称为“三角形数”。请同学们想一想,28后面的下一个三角形数是多少?(36)
教师:大家再看,一个图形,如果是4个小正方形可以拼成大正方形,如果是9个小正方形可以拼成大正方形,16个小正方形也可以拼成大正方形。像这样的数,我们称之为“正方形数”。
【设计意图】通过两个练习,让学生进一步体会数形结合的特点,感受用形来解决数的有关问题的直观性与简捷性。在练习中充分让学生动脑、动口、动手,在交流中发现特点,解决问题。
四、回顾反思
教师:今天这节课,我们一起学习了“数与形”,说说你有什么收获?
课后反思:
形的问题中包含着数的规律,数的问题也可以用形来帮助解决,教学时,让学生通过解决问题体会到数与形的完美结合,通过数与形的对应关系,相互印证结果,发现“和”都是“平方数”,再通过图形的规律理解“平方数”(即正方形数)的含义,并让学生大胆说出自己发现的其他规律,从不同角度寻找规律,例如从第一个图到第三个图,每次增加多少个小正方形,用加法怎样列式,加数都是连续奇数,这些奇数在图中什么地方,从而对规律形式更直观的认识。
七年级数学上册人教版教案8
一、教学目标
1、知识与技能:
(1)在现实中,认识角是一种基本的几何图形,理解角的概念,掌握角的表示方法。
(2)认识角的度量单位度、分、秒,能根据角的度量比较角的大小,熟练进行角的换算。
2、能力目标:培养学生的抽象概括能力,增强应用数学的意识。
3、情感目标:通过丰富的图形世界进一步理解角的有关概念,感受数学与生活的密切联系,积极参与数学学习活动。
4、过程与方法:提高学生的识图的能力,学会用运动变化的观点看问题。
二、教学重点、难点关键
1、教学重点:角的概念、表示方法及角度制的换算
2、教学难点:角的表示方法、角度制的换算
3、关键:学会观察图形是正确表示一个角的关键
三、学情分析
角是几何初步知识中比较抽象的概念,学生在小学已经初步接触了角的有关知识,对角的概念、比较、度量有了初步的认识。按照教学目标要求,这节课将进一步对角的概念、比较和度量进行规范。培养学生观察、比较、概括能力,借此引导学生在已有的生活经验和知识的基础上学习数学,理解数学,体会数学与生活的关系。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本节课设计的教学方法是采用引导发现法,辅之以讨论法
四、教学准备
为了提高课堂教学效率,激发学生学习兴趣,培养学生的空间想象力,本节课采用的是直观教学手段,充分利用多媒体演示,便于学生理解和掌握。
五、教学用具:
量角器
六、教学过程
(一)引入新课
1多媒体放映一些生活中图形:时钟,教堂,足球射门请生观察。
2提出问题:
时钟的分针和时针,教堂的屋顶,足球与门框,都给我们怎样的平面图形的形象?请把它们画出来。
学生活动:进行独立思考,画出一个角,然后观看教师的演示过程。
(二)活动探究,建构新知
活动一
角的概念
师:我们如何给角下定义?请大家根据自己的理解给角下一个定义。生:角的两种定义:
a、角是由两条具有公共端点的射线组成的图形,两条射线的公共端点上一这个角的顶点,这两条射线是这个角的边;
b、角也可以看成由一条射线绕着它的端点旋转而成的图形。
(学生小组活动思考讨论,组内统一意见,代表发言,最后比较各答案得出准确定义。学生对角的概念已初步接触过,让学生进一步加深对角的概念的理解,培养学生抽象概括能力以及语言的表达能力。但由于学生的语言表达能力还不是太强,教师可进行适当的纠正、归纳)
活动二
角的表示
师:如何表示一个角?请同学们阅读课本第136面在关内容,归纳角的表示方法(小组内讨论互助)
生:角的表示方法有:
1、角的符号+三个大写字母,如:∠aob
2、角的符号+一个大写字母,如:∠o
(顶点处只有一个角时)
3、角的符号+数字如:∠1
4、角的符号+希腊字母如∠α
师:在用这些方法表示角的时候应该注意些什么呢?
生:用“角的符号+三个大写字母”表示角的时候要用大写字母,顶点的.字母应该写在中间;在顶点处只有一个角时,才可以用一个大写的字母表示。
师:老师再告诉大家一个细节:用数字或希腊字母表示角的时候,要在角上画一个小弧形。另外在角的表示中不能丢了前面角的符号。
(在课堂教学中,教师应该充分相信学生,让学生在课堂上有充分的活动空间和时间,形成学生自我寻求发展的愿望,充分发挥他们的自主精神。当然,学生在归纳、表述的时候会出现不正确、思维不太严谨的地方,教师可给于适当的引导、纠正)
尝试应用,反馈矫正
师:请同学们完成下面的练习
1、图中共有多少个角?请分别表示出来。
c
2、将图中的角用不同方法表示出来并填写下表
b
b
∠1
∠bca∠3∠4abc
ceda
获得积极深层次的体验,从而促进学生探究能力的发展)
活动三
角的度量与比较
ab
师:点a、b、c表示足球比赛中三个不同的射门位置,请同学们:c
1、先估测图中所示各个角的大小
2、再用量角器量一量,比较它们的大小,并与同学们交流度量角的方法3、射门角度越大,进球机会越大,请指出在图中哪一点射门最好
4、对于角的比较大小,你还能有什么好的方法吗?
生:1、∠b最大
2、∠a=28°∠b=91°∠c=45°
量角器的使用方法:“一对中,二合线,三读数”
1、点b射门最好。
2、对于角的比较大小,也可以通过叠合的方法来比较。
(通过学生的探索,让学生明白角的比较方法很多,可以通过估测、度量的方法,也可以通过叠合的方法来比较角的大小)
(三)、巩固练习,迁移新知
试一试1、如图打台球的时候,球的反射角总是等于入射角。
请同学们估测球反弹后会撞击图中的哪一点?
(问题1以打台球为情景,因为台球是学生喜爱的体育活动,又与角有着密切的关系,可进一步引导学生分析角的三种比较方法)
2、(1)图中以oa为一边的角有哪几个?请按大小顺序用“﹤”号连接起来;
(2)∠aoc=∠aob+∠boc,∠aob=∠aod-∠dob。类似地,你还能写
出哪些有关的角的和与差的关系式?o
dac
b
(问题2具有开放性,教学中要指导学生认真读图,要给学生较为充分的独立思考、相互交流的时间和空间,鼓励学生尽可能多地表述出有关角的和与差的关系式)
3、已知一条射线oa,若从点o再引两条射线ob、oc,使得∠aob=600,∠boc=300,求∠aoc的度数。
(问题3的解答中,∠aoc有两种可能,不少同学只得出了一个答案:90°。表现出思维不太严谨,此时教师应该抓住思维训练的契机,培养学生的思维能力)关于角的度量单位,教学时应强调:
(1)度、分、秒是常用的角的度量单位;
(2)度、分、秒的进率是60(与时间的单位时、分、秒的换算一样)多媒体出示例题与练习
(四)、归纳总结,系统知识
师:本节课学习了哪些知识?
生:学习了角的概念、角的表示、角的比较与度量,角的换算。
师:通过本节课的实践、探索、交流与讨论,你有哪些收获?
生:学会了角的表示方法,角的大小比较方法,并能熟练地进行角度的换算等
(五)、布置作业:课本p3081、2、3同时出示思考题“用一副三角板,你可以作出哪些特殊的角”作为本节课的延伸。
七年级数学上册人教版教案9
【教学目标】
1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。
2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。
3、养成学生积极主动的学习态度和自主学习的方式。
【重点难点】
重点:认识点、线、面、体的几何特征,感受它们之间的关系。
难点:在实际背景中体会点的含义。
【教学准备】
圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型
【教学过程】
一、创设情境
多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的`喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.
设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.
二、讨论(动态研究)
课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?
观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.
让学生举出更多的“点动成线、线动成面、面动成体”的例子。
小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)
设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。
三、讨论(静态研究)
教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。
让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。
四、探索
1、课本112页观察,并回答它的问题。
引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。
2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:
这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?
让学生自己体会并小组讨论得出点、线、面、体之间的关系。
五、作业
1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.
2、阅读教科书第119页的实验与探究,并思考有关问题。
七年级数学上册人教版教案10
垂线
[教学目标]
1。理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2。掌握点到直线的距离的概念,并会度量点到直线的距离。
3。掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]
1。教学重点:垂线的定义及性质。
2。教学难点:垂线的画法。
[教学过程设计]
一。复习提问:
1、叙述邻补角及对顶角的定义。
2、对顶角有怎样的性质。
二。新课:
引言:
前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义
当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线AB、CD互相垂直,记作,垂足为O。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:
1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)
反之,
(二)垂线的画法
探究:
1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?
3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?
画法:
让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
性质1过一点有且只有一条直线与已知直线垂直。
练习:教材第7页
探究:
如图,连接直线l外一点P与直线l上各点O,
A,B,C,……,其中(我们称PO为点P到直线
l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?
性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(四)点到直线的距离
直线外一点到这条直线的垂线段的.长度,叫做点到直线的距离。
如上图,PO的长度叫做点P到直线l的距离。
例1
(1)AB与AC互相垂直;
(2)AD与AC互相垂直;
(3)点C到AB的垂线段是线段AB;
(4)点A到BC的距离是线段AD;
(5)线段AB的长度是点B到AC的距离;
(6)线段AB是点B到AC的距离。
其中正确的有()
A。 1个B。 2个
C。 3个D。 4个
解:A
例2如图,直线AB,CD相交于点O,
解:略
例3如图,一辆汽车在直线形公路AB上由A
向B行驶,M,N分别是位于公路两侧的村庄,
设汽车行驶到点P位置时,距离村庄M最近,
行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。
练习:
1。
2。教材第9页3、4
教材第10页9、10、11、12
小结:
1。要掌握好垂线、垂线段、点到直线的距离这几个概念;
2。要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;
3。垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。
七年级数学上册人教版教案11
教学目标
1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。
2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.
重点、难点
重点:探索并理解平移的性质.
难点:对平移的认识和性质的探索.
教学过程
一、引入新课
1.教师打开幻灯机,投放课本图5.4-1的图案.
2.学生观察这些图案、思考并回答问题.
(1)它们有什么共同的特点?
(2)能否根据其中的一部分绘制出整个图案?
3.师生交流.
(1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.
《5.4平移》同步讲义练习和同步练习
1在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的`位置,若平移的距离为2,则图中的阴影部分的面积为 .
2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为 cm2.
3、绐正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为l的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20xx次“移位”后,则他所处顶点的编号是 .
《5.4平移》同步测试卷含答案
1. 将图形平移,下列结论错误的是( )
A.对应线段相等
B.对应角相等
C.对应点所连的线段互相平分
D.对应点所连的线段相等
解析: 根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.
12. 国旗上的四个小五角星,通过怎样的移动可以相互得到( )
A.轴对称 B.平移 C.旋转 D.平移和旋转
解析: 国旗上的四个小五角星通过平移和旋转可以相互得到.故选D.
七年级数学上册人教版教案12
教学目标
1、使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数、
2、初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系、
重点
掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数、
难点
识别单项式的系数和次数、
教学过程
一、创设情境,导入新课
师:出示图片、
青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:
(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?
(2)t小时呢?
二、推进新课
(一)用含字母的式子表示数量关系、
师:出示第54页例1、
生:解答例1后,讨论问题,用字母表示数有什么意义?
学生经过讨论得出一定的答案,但可能不会太规范,教师总结、
师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式、一个数或表示数的字母也是代数式)、
师生共同完成例2,进一步体会用字母表示数的意义、
巩固练习:第56页练习、
(二)单项式的概念、
师:出示问题、
引言与例1中的式子100t,0.8p,mn,a2h,—n这些式子有什么特点?
生:通过观察、对比、讨论得出,各式都是数或字母的.积、
师:指出单项式的概念,特别地,单独的一个数或字母也是单项式、
巩固练习:下列各式是单项式的式子是____________、
《整式的加减》同步练习
1、代数式a2+a+3的值为8,则代数式2a2+2a﹣3的值为?
2、甲、乙二人一起加工零件、甲平均每小时加工a个零件,加工2小时;乙平均每小时加工b个零件,加工3小时、甲、乙二人共加工零件___个。
《整式的加减》单元测试卷含答案
9、已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是()
A、ab B、a+b C、10a+b D、100a+b
【考点】列代数式、
【分析】a放在左边,则a在百位上,据此即可表示出这个三位数、
【解答】解:a放在左边,则a在百位上,因而所得的数是:100a+b、
故选D、
【点评】本题考查了利用代数式表示一个数,关键是正确确定a是百位上的数字、
10、原产量n吨,增产30%之后的产量应为()
A、(1﹣30%)n吨B、(1+30%)n吨C、n+30%吨D、30%n吨
【考点】列代数式、
【专题】应用题、
【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可、
【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨、
故选B、
【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系、
七年级数学上册人教版教案13
单元教学内容
1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念
2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系
(2)数轴能反映数的性质、
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数
(4)数轴可使有理数大小的比较形象化
3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分
4、正确理解绝对值的概念是难点
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值
(2)有理数的绝对值是一个非负数,即最小的绝对值是零
(3)两个互为相反数的绝对值相等,即│a│=│-a│
(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a
(5)若│a│=│b│,则a=b,或a=-b或a=b=0
三维目标
1、知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数
(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解
(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值
(4)会利用数轴和绝对值比较有理数的大小
2、过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法
3、情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言
重、难点与关键
1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值
2、难点:准确理解负数、绝对值等概念
3、关键:正确理解负数的意义和绝对值的意义
课时划分
1、1 正数和负数 2课时
1、2 有理数 5课时
1、3 有理数的加减法 4课时
1、4 有理数的乘除法 5课时
1、5 有理数的乘方 4课时
第一章有理数(复习) 2课时
1、1正数和负数
第一课时
三维目标
一、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量
二、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性
三、情感态度与价值观
培养学生积极思考,合作交流的意识和能力
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备
投影仪、
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的.0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量。
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量
六、巩固练
课本第3页,练习1、2、3、4题
七年级数学上册人教版教案14
【学习目标】:
1、会用尺规画一条线段等于已知线段;
2、会比较两条线段的长短;
3、理解线段中点的 概念,了解“两点之间,线段最短”的性质。
【学习重点】:线段 的中点概念,“两点之间,线段最短”的性质是重点;
【学习难点】:画一条线段等于已知线段是难点。
【导学指导】
一、温故知新
1、过A、B、C三点作直线,小 明说有三条,小颖说有一条,小林说不是一条就是三条,你认为______的说法是对的。
二 、自主学习
问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长 ?
上面的实际问题可以转化为下面的数学问题:
2、比较两条线段的长短
两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?
我们先来回答下面的问题。
怎样比较两个同学的身高?
一是用尺子测量;二是站在一起比(脚在同一高度)。
如果把两个同学看成两条线段,那么比较两条线段就有两种方法。
(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。
(2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。
练习题
一、填空
1.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.
2. 三条直线两两相交,则交点有_______________个.
二、下列说法中正确的是( )
A、两点之间线段最短
B、若两个角的顶点重合,那么这两个角是对顶角
C、一条射线把一个角分成两个角,那么这条射线是角的平分线
D、过直线外一点有两条直线平行于已知直线
9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的`有( )
A、0个B、1个C、2个D、3个
同步四维训练
知识一:直线的性质
3.在开会前,工作人员进行会场布置,在主席台上由两人拉着一条绳子,然后以“准绳”为基准摆放茶杯,这样做的理由是(B )
A.两点之间线段最短
B.两点确定一条直线
C.垂线段最短
D.过一点可以作无数条直线
知识点二:线段的作法及比较
4.在跳绳比赛中,要在两条绳子中挑出较长的一条用于比赛,选择的方法是(A )
A.把两条绳子的一端对齐,然后拉直两条绳子,另一端在外面的即为长绳
B.把两条绳子接在一起
C.把两条绳子重合观察另一端的情况
D.没有办法挑选
七年级数学上册人教版教案15
一、教学目标
1。理解一个数平方根和算术平方根的意义;
2。理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3。通过本节的训练,提高学生的逻辑思维能力;
4。通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合。
四、教学手段
多媒体
五、教学过程
(一)提问
1。已知一正方形面积为50平方米,那么它的边长应为多少?
2。已知一个数的平方等于1000,那么这个数是多少?
3。一只容积为0。125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习:填空
1。()2=9;2。()2 =0。25;
5。()2=0。0081。
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0。5是0。25的平方根;
0的平方根是0;
±0。09是0。0081的平方根。
由此我们看到3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
()2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1。一个正数有两个平方根,它们互为相反数。
2。0有一个平方根,它是0本身。
3。负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到3与—3的平方是9,9的平方根是3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的`表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1。用正确的符号表示下列各数的平方根:
①26②247③0。2④3⑤
解:①26的平方根是
②247的平方根是
③0。2的平方根是
④3的平方根是
⑤的平方根是
【七年级数学上册教案】相关文章:
七年级数学上册教案01-31
七年级上册数学教案11-23
七年级上册数学ppt教案人教版07-15
数学上册教案02-07
七年级数学上册全册优秀教案07-24
语文七年级上册教案初中语文七年级上册教案04-06
人教版七年级数学上册教案(通用11篇)07-18
五数学上册人教版教案12-08
七年级语文上册教案02-21