人教版七年级数学上册教案(通用11篇)
作为一位兢兢业业的人民教师,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。如何把教案做到重点突出呢?下面是小编为大家整理的人教版七年级数学上册教案,希望对大家有所帮助。
七年级数学上册教案 篇1
单元教学内容
1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念
2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系
(2)数轴能反映数的性质、
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数
(4)数轴可使有理数大小的比较形象化
3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分
4、正确理解绝对值的概念是难点
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值
(2)有理数的绝对值是一个非负数,即最小的绝对值是零
(3)两个互为相反数的绝对值相等,即│a│=│-a│
(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a
(5)若│a│=│b│,则a=b,或a=-b或a=b=0
三维目标
1、知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数
(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解
(3)理解相反数、绝对值的.几何意义和代数意义,会求一个数的相反数和绝对值
(4)会利用数轴和绝对值比较有理数的大小
2、过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法
3、情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言
重、难点与关键
1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值
2、难点:准确理解负数、绝对值等概念
3、关键:正确理解负数的意义和绝对值的意义
三维目标
一、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量
二、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性
三、情感态度与价值观
培养学生积极思考,合作交流的意识和能力
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备
投影仪、
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量。
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量
六、巩固练
课本第3页,练习1、2、3、4题
七年级数学上册教案 篇2
教学目标:
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点:
正确理解分类的标准和按照一定的标准进行分类
知识重点:
正确理解有理数的概念
教学过程:
探索新知
在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:
按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与。
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的`数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。
思考:
问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。
小结与作业
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
七年级数学上册教案 篇3
【教学目标】
1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。
2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。
3、养成学生积极主动的学习态度和自主学习的方式。
【重点难点】
重点:认识点、线、面、体的几何特征,感受它们之间的关系。
难点:在实际背景中体会点的含义。
【教学准备】
圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型
【教学过程】
一、创设情境
多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的'切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.
设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.
二、讨论(动态研究)
课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?
观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.
让学生举出更多的“点动成线、线动成面、面动成体”的例子。
小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)
设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。
三、讨论(静态研究)
教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。
让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。
四、探索
1、课本112页观察,并回答它的问题。
引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。
2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:
这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?
让学生自己体会并小组讨论得出点、线、面、体之间的关系。
五、作业
1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.
2、阅读教科书第119页的实验与探究,并思考有关问题。
七年级数学上册教案 篇4
教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的`热情。
教学重点:
知道什么是正数和负数,理解数0表示的量的意义。
教学难点:
理解负数,数0表示的量的意义。
教学方法:
师生互动与教师讲解相结合。
教具准备:
地图册(中国地形图)。
教学过程:
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1、自然数的产生、分数的产生。
2、章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)
-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。
巩固提高:练习:课本P5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
七年级数学上册教案 篇5
教学目标:
1、经历探索有理数减法法则的过程。
2、理解并初步掌握有理数减法法则,会做有理数减法运算。
3、能根据具体问题,培养抽象概括能力和口头表达能力。
教学重点:
运用有理数减法法则做有理数减法运算。
教学难点:
有理数减法法则的得出。
教具学具:
多媒体、教材、计算器
教学方法;
研讨法、讲练结合
教学过程一、引入新课:
师:下面列出的是连续四周的.最高和最低气温:
第1周第二周第三周第四周
最高气温+6℃0℃+4℃-2℃
最低气温+2℃-5℃-2℃-5℃
周温差
求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。
生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。
列式为;
(+6)-(+2)=4
0-(-5)=5
(+4)-(-2)=6
(-2)-(-5)=3
教学过程二、有理数减法法则的推倒:
师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。
2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?
3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。
举例:(-5)+()=-2
得出(-5)+(+3)=-2
所以得到(-2)-(-5)=+3
而(-2)+(+5)=+3
有理数减法法则:减去一个数,等于加上这个数的相反数。
教学过程三、法则的应用:
例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
教学过程
解:(1)原式=-34+(-56)+(+28)
=-90+(+28)
=-62
(2)原式=+25+(+293)+(-472)
=+25+(-836)
= 676
注意:强调计算过程不能跳步,体现有理数减法法则的运用。
检测题
教学过程四、练习反馈:
师:巡视个别指导,订正答案。
教学过程五、小结:
有理数减法法则:
减去一个数,等于加上这个数的相反数。
有理数减法法则:
减去一个数,等于加上
这个数的相反数。例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
七年级数学上册教案 篇6
学习目标:
1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。毛
2、数学思考:体会数学符号与对应的思想。
3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。
重点:
进一步理解正、负数及零表示的量的意义。
难点:
理解负数及零表示的量的意义。
课前准备
卷尺或皮尺
教学流程安排
活动1、复习正、负数 从学生已有的知识出发,为进一步学习做好知识准备。
活动2、活动安排 使学生进入问题情境,加深对负数的理解。
活动3、举例说明 提高解决实际问题的能力。
活动4、巩固练习 掌握正数和负数。
教学过程设计
活动1
1、 给出一组数,请学生说说哪些是正数、负数。
2、 学生举例说明正、负数在实际中的应用。
师生行为及设计意图
通过上一堂课的学习,让一组同学任意给出一组数,另一组同学找出哪些是正数?哪些是负数?正整数?负分数?复习正、负数的定义。
活动2
1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。
2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)
师生行为
1、老师说出指令:向前1步,向后3步,向前-2步,向后-2步。学生按老师的指令表演。
2、各小组派一名同学汇报完成的情况。
设计意图
通过学生的活动,激发学生参与课堂教学的热情,在活动中巩固所学的知识。
活动3
问题展示
1、 一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重的`增长值。
2、 2001年 商品进出口总额比上年的变化情况是:
美国减少6.4%% , 德国增长1.3%,
法国减少2.4% , 英国减少3.5%,
意大利增长0.2 %, 中国增长7.5%,
师生行为及设计意图
在学生已初步掌握新知识的前提下,由问题1 、2提高学生综合解决实际问题的能力。
活动4
1、 P6 练习
2、 总结:这堂课我们学习了那些知识?你能说一说吗?
3、 作业 P7习题1 .1 4、7、8
师生行为及设计意图
教师巡视、指导。学生交流、完成练习。对所学知识的巩固是教学的一个重要环节,这里的练习可以分散进行。
教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。
学生课后巩固、提高、发展。
七年级数学上册教案 篇7
内容:
整式的乘法—单项式乘以多项式 P58-59
课型:
新授 时间:
学习目标:
1、在具体情景中,了解单项式和多项式相乘的意义。
2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。
3、培养学生有条理的思考和表达能力。
学习重点:
单项式乘以多项式的法则
学习难点:
对法则的理解
学习过程
1.学习准备
1.叙述单项式乘以单项式的法则
2.计算
(1)(- a2b) ?(2ab)3=
(2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)
3、举例说明乘法分配律的应用。
2.合作探究
(一)独立思考,解决问题
1、 问题: 一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?
结合图形,完成填空。
算法一:3天共修筑路面的.总长为(a+b+c)m,因为路面的宽为bm,所以3
天共修筑路面 m2.
算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2.
因此,有 = 。
3.你能用字母表示乘法分配律吗?
4.你能尝试单项式乘以多项式的法则吗?
(二)师生探究,合作交流
1、例3 计算:
(1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)
2、练一练
(1)5x(3x+4) (2) (5a2? a+1)(-3a)
(3)x(x2+3)+x2(x-3)-3x(x2?x-1)
(4)(?a)(-2ab)+3a(ab-b-1))
(三)学习
对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?
(四)自我测试
1、教科书P59 练习 3,结合解题,单项式乘以多项式的几何意义。
2、判断题
(1)-2a(3a-4b) =-6a2-8ab ( )
(2) (3x2-xy-1) ? x =x3 -x2y-x ( )
(3)m2- (1- m) = m2- - m ( )
3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于 ( )
A. -1 B. 0 C. 1 D. 无法确定
4、计算(2009 贺州中考)
(-2a)?( a3 -1) =
5、(3m)2(m2+mn-n2)=
(五)应用拓展
1、计算
(1)2a(9a2-2a+3)-(3a2) ?(2a-1)
(2)x(x-3)+2x(x-3)=3(x2-1)
2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。
3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?
七年级数学上册教案 篇8
一、教学目标: (一)教学知识点
1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据.
2 .近似数和有效数字 并按要求取近似数.
3.从统计图中获取信息 并用统计图形象地表示数据.
(二)能力训练要求
1.体会描述较小 数据的方法 进一步发展数感.
2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用.
3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念.
(三)情感与价值观要求:
1.培养学生用数学的意识和信心 体会数学的应用价值.
2.发展学生的创新能力和克服困难的勇气.
二、教学重点:
1.感受较小的数据.
2.用科学记数法表示较小的数.
3.近似数和有效数字 并能按要求取近似数.
4.读懂统计图 并能形象、有效地用统计图描述数据.
教学难点:形象、有效地用统计图描述数据.
教学过程:.创设情景 引入新
三、讲授新:
请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。
1.哪些数据用科学记数法表示比较方便?举例说明.
2.用科学记数法表示下列各数:
(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米.
(2)生物学家发现一种病毒的长度约为0.000043毫米;
(3)某种鲸的体重可达136 000 000千克;
(4)2003年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的发行量为12 500 000枚.
四、时小结:
我们这节回顾了以下知识:
1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据.
2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字.
3.又一次欣赏了形象的统计图 并从中获取有用的信息.
(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象.
(2)从上表中的.数据可以看出 河流的河长与流域面积有什么样的联系?
(3)在中国地形图上找出主要河流 你认为河流年径流量与河流所处的地理位置有关系吗?
制作形象的统计图 首先要处理好数据 即从表格中计算出这几条河流长度的比例 然后选择最大或最小作为基准量 按比例形象画出即可.
(1)形象统计图(略)只要合理即可.
(2)从表中的数据看出 河流越长 其流域面积越大.
(3)河流的年径流量与河流所处的位置有关系.
七年级数学上册教案 篇9
一、教材分析
1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时
2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用
3、教学的重点、难点:
重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索
(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)
4、教学目标:
A:知识与技能目标
(1).理解对顶角和邻补角的概念,能在图形中辨认.
(2).掌握对顶角相等的性质和它的推证过程
(3).会用对顶角的性质进行有关的简单推理和计算.
B:过程与方法目标
(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.
C:情感、态度与价值目标
(1).感受图形中和谐美、对称美.
(2).感受合作交流带来的成功感,树立自信心.
(3).感受数学应用的广泛性,使学生更加热爱数学
二、学情分析:
在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.
三、教法和学法:
教法:
叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.
学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.
四、教学过程:
1课前准备:课件,剪刀,纸片,相交线模型
2教学过程:设置以下六个环节
环节一:情景屋(创设情景,激发学习动机)
请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线
环节二:问题苑(合作交流,解释发现)
通过一些问题的设置,激发学生探究的欲望,具体操作:
(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化
(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)
(3):分析研究此模型:
设置以下一系列问题:
A、两直线相交构成的4个角两两相配共能组成几对?(6对)
B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。
另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角
C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。
D、你能阐述它们互补和相等的理由吗?
(一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)
环节三:快乐房(大胆创设,感悟变换)
(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)
环节四:实例库(拓展应用,升华提高)
例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力
例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的.瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力
(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).
最后安排一个脑筋急转弯:见投影
(让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)
环节五:点金帚(学后反思感悟收获)
通过本堂课的探究
我经历了......
我体会到......
我感受到......
(学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)
角的名称
特征
性质
相同点
不同点
对顶角
①两条直线相交而成的角
②有一个公共顶点
③没有公共边
对顶角相等
都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个
邻补角
①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补角互补
环节六:沉思阁(课后延伸张扬个性)
此为课后作业:
(适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)
五、教学设计说明:
设计理念:面向全体学生,实现:
——人人学有价值的数学
——人人都能获得必需的数学
——不同的人在数学上得到不同的发展
过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。
设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。
七年级数学上册教案 篇10
教材分析:
本节课是新教材几何教学的第一节课,通过学生身边的现实生活中的实物,让学生感觉图形世界丰富多彩。经历从现实世界中抽象出几何图形的过程.激发学生学习几何的热情.。无需对具体定义的深刻理解,只要学生能用自己的语言描述它们的某些特征。
教学目标:
知识目标:
在具体情境中认识立方体、长方体、圆柱体、圆锥体、球体。并能用自己的语言描述它们的某些特征。进一步认识点、线、面、体,初步感受点、线、面、体之间的关系。
能力目标:
让学生经历“几何模形---图形---文字”这个抽象过程,培养学生抽象、辨别能力。
情感目标:
感受图形世界的丰富多彩,激发学习几何的热情。
教学重点:
经历从现实世界中抽象出几何图形的过程,感受点、线、面、体之间的关系。
教学难点:
抽象能力的培养,学习热情的激发。
教学方法:
引导发现、师生互动。
教学准备:
多媒体课件、学生身边的实物等。
教学过程:
合作学习
问题1:
我们已学过的或认得的存有哪些几何体?
(学生讨论、交流)
问题2:
你能举出一些在日常生活中形状与上述几何体类似的物体吗?
(学生讨论、举例)
课本中P162中的合作学习
(教师可多举一些平面与曲面的实例让学生感受、辨别)
特别指出:
数学中的平面是可以无限伸展的
议一论
P163课内练习1
P163课内练习2
师生讨论指出:
线与线相交成点,面与面相交成线。
想一想:
观察下图,你发现什么?
师生讨论
议一议:
日常生活中的哪些事物给人以点、线的'形象。
指出:
日常生活中点与面只是相对的一个感念。如:
在中国的地图上,北京是一个点;而在北京市地图上,北京是一个面。
活动探究:
P164课内练习3
应用拓展:
请以给定的图形“〇〇、△△、═”(两个圆、两个三角形、两条平行线)为构件,尽可能多地构思独特且有意义的图形,并写上一句贴切、诙谐的解说词。如图就是符合要求的一个图形。你还能构思出其他的图形吗?比一比,看谁想得多。
议一议:
本节课有什么收获?
布置作业
七年级数学上册教案 篇11
教学过程:
一、复习
1、一辆汽车行驶的速度不变,行驶的时间和路程。
2、一辆汽车从甲地开往乙地,行驶的时间和速度。
看上面的题,回答下面的问题:
(1)各有哪三种量?
(2)其中哪一种量是固定不变的?
(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?
3、这节课,我们就应用比例的知识解决一些实际问题。
二、新授
1、教学例5
(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?
(2)学生读题后,思考和讨论下面的问题:
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(4)根据正比例的意义列出方程:
解:设李奶奶家上个月的水费是χ元。
12.8/8=χ/10
8χ= 12.8×10
χ=128÷8
χ= 16答:李奶奶家上个月的水费是16元。
(5)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
3、教学例6
(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?
(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。
(3)指名板演,全班评讲。
4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。
三、巩固练习
1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。
2、完成练习九第5、6、7题。
四、总结
用比例知识解决问题的步骤是什么?
教学目标:
1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的'应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。
3、培养学生良好的解答应用题的习惯。
教学重点:
用比例知识解答比较容易的归一、归总应用题。
教学难点:
正分析题中的比例关系,列出方程。
【七年级数学上册教案】相关文章:
七年级数学上册教案01-31
七年级上册数学教案11-23
数学上册教案02-07
七年级数学上册人教版教案02-13
五数学上册人教版教案12-08
语文七年级上册教案初中语文七年级上册教案04-06
人教版七年级上册教案03-01
七年级语文上册教案02-21
七年级上册生物教案02-24