教案

数学初中教案

时间:2025-10-04 09:47:23 教案 我要投稿

【精华】数学初中教案15篇

  作为一无名无私奉献的教育工作者,时常需要用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那要怎么写好教案呢?以下是小编为大家整理的数学初中教案,欢迎阅读与收藏。

【精华】数学初中教案15篇

数学初中教案1

  教学目标

  知识与技能:

  在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。

  过程与方法:

  通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。

  情感态度与价值观:

  通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。

  教学重难点

  教学重点:

  掌握平行四边形的面积计算公式,并能正确运用。

  教学难点:

  平行四边形面积计算公式的推导。

  教学工具

  多媒体课件,平行四边形纸片,剪刀,学具袋

  教学过程

  教学过程设计

  1 、复习旧知

  请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)

  2 、情境引入

  (一)、故事激趣

  同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)

  (二)、学生思考、猜测

  学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积

  3、探究新知

  (一)利用方格,初步探究

  1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。

  课件出示:比较两个图形的大小,然后引进格子图。

  师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)

  2、同桌交流方法

  3、生汇报想法

  4、通过数方格你发现了什么?

  生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等

  5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?

  如果,我用数方格的方法得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?

  (二)动手操作,深入探究

  1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?

  2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。

  师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。

  (板书:割补法)

  3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。

  4、展示学生作品:不同的方法将平行四边形变成长方形。

  提问:观察拼出的`长方形和原来的平行四边形,你发现了什么?

  平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。

  引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S = ah

  (边说边板书)

  4 、学以致用

  (一)、课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

  (板书:S=ah=6×4=24㎡)

  (二)、课件出示练习题,学生独立完成。

  1、有一块地近似平行四边形,底43米,高20、1米,面积是多少平方米?

  2、填表

  3、判断:

  (1)平行四边形的底是7米,高是4米,面积是2 8米。()

  (2)a=5分米,h=2米,S=100平方分米。()

  4、下面对平行四边形面积的计算对吗?

  6×3=18(平方米)()

  5、下面对平行四边形面积的计算对吗?

  8×7=56(平方分米)()

  6、思考题:你有几种方法求下面图形的面积?

  课后小结

  回想一下刚才我们的学习过程,你有什么收获?

  计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推

  板书

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

数学初中教案2

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的`基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例

  公式

  一、教学目标

  (一)知识教学点

  1.使学生能利用公式解决简单的实际问题.

  2.使学生理解公式与代数式的关系.

  (二)能力训练点

  1.利用数学公式解决实际问题的能力.

  2.利用已知的公式推导新公式的能力.

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践.

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

  二、学法引导

  1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

  2.学生学法:观察→分析→推导→计算

  三、重点、难点、疑点及解决办法

  1.重点:利用旧公式推导出新的图形的计算公式.

  2.难点:同重点.

  3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

  板书: 公式

  师:小学里学过哪些面积公式?

  板书: S = ah

  附图

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

  (二)探索求知,讲授新课

  师:下面利用面积公式进行有关计算

  (出示投影2)

  例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。

  师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

  2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)

  学生口述解题过程,教师予以指正并指出,强调解题的规范性.

  【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

  (出示投影3)

  例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积

  学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

  评讲时注意1.如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

  2.本题实际上是由圆的面积公式推导出环形面积公式.

  3.进一步强调解题的规范性

  教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

  测试反馈,巩固练习

  (出示投影4)

  1.计算底 ,高 的三角形面积

  2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t

  3.已知圆的半径 , ,求圆的周长C和面积S

  4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。

  (1)求A地到B地所用的时间公式。

  (2)若 千米/时, 千米/时,求从A地到B地所用的时间。

  学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

  【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

  师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

  八、随堂练习

  (一)填空

  1.圆的半径为R,它的面积 ________,周长 _____________

  2.平行四边形的底边长是 ,高是 ,它的面积 _____________;如果 , ,那么 _________

  3.圆锥的底面半径为 ,高是 ,那么它的体积 __________如果 , ,那么 _________

  (二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积V,如果 , , ,V是多少?

  九、布置作业

  (一)必做题课本第22页1、2、3第23页B组1

  (二)选做题课本第22页5B组2

  十、板书设计

  附:随堂练习答案

  (一)1。 2。 3。

  (二)

  作业答案

  必做题1。

  2。 3。

  选做题5。

  探究活动

  根据给出的数据推导公式。

数学初中教案3

  3、方程(2a—4)x

  —2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程

  ※4、已知关于x的一元二次方程(m-1)x

  +3x-5m+4=0有一根为2,求m。

  设计意图:分层次布置作业,尊重学生的个体差异,激发学生学习积极性。

  【课程资源】

  一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二次的整式方程。

  在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。

  埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的求根公式。

  希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。

  公元628年,从印度的婆罗摩笈多写成的'《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。

  在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令a、b、c为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数学家们为了解三次方程而开始应用复数根。

  韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。

  我国《九章算术.勾股》章中的第二十题是通过求相当于的正根而解决的。我国数学家还在方程的研究中应用了内插法。

数学初中教案4

  【教材分析】

  一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

  【教学目标】

  1、理解一元二次方程的概念,能熟练地把一元二次方程整理成一般形式(≠0)并知道各项及其系数。

  2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的进一步认识。

  【教学重点与难点】

  理解一元二次方程的概念及一般形式,会正确识别一般式中的“项”及“系数”。

  【教法、学法】

  因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。本节课借助多媒体辅助教学,指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

  【教学过程】

  一、复习旧知,类比新知

  1、一元一次方程的概念

  像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程

  2、一般形式:

  是常数且

  设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。

  二、生活情境,自主学习

  (1)正方形桌面的面积是2m

  ,设正方形桌面的边长是x m,可得方程

  (2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,

  设花圃的宽是x m则花圃的长是m,

  可得方程

  (3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是x cm,可得方程

  (4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是x m,可得方程

  设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

  三、探究学习:

  1、概念得出

  讨论交流:以上所列方程有哪些共同特征?

  设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的

  2、巩固概念

  下列方程中那些是一元二次方程。

  设计意图:

  这组练习目的'在于巩固学生对一元二次方程定义中3个特征的理解.题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.

  3、一元二次方程的一般形式:

  设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的

  4.典型例题

  例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项

  设计意图:此题设置的目的在于加深学生对一般形式的理解。

  5.巩固练习

  把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项

  设计意图:此题设置的目的在于加深学生对一般形式的理解

  6、拓展应用

  (1)、若是关于x的一元二次方程,则()

  A、p为任意实数B、p=0 C、p≠0 D、p=0或1

  (2)、若关于x的方程mx

  -2x+1=2x(x-1)是一元二次方程,那么m的取值范围是

  (3)、若方程是关于x的一元二次方程,则m的值为

  设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。

  7.课堂小结

  设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。

  【课后作业】

  1、下列方程中哪些是一元二次方程?试说明理由。

  2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:

数学初中教案5

  一、学习目标:

  1、掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用。

  2、正确运用二次根式的性质及运算法则进行二次根式的.混合运算。

  二、学习重点:

  正确运用二次根式的性质及运算法则进行二次根式的混合运算。

  学习难点:二次根式计算的结果要是最简二次根式。

  三、过程

  知识准备

  1、满足下列条的二次根式是最简二次根式。

  2、回忆有理数,整式混合运算的顺序。

  3、回忆并整理整式的乘法公式。

  方法探究1

  ⑴(512+23)x15

  ⑵(3+10)(2-5)

  归纳:

  尝试练习:

  ⑴(3+22)x6

  ⑵(827-53)6

  ⑶(6-3+1)x23

  ⑷(3-22)(33-2)

  ⑸(22-3)(3+2)

  ⑹(5-6)(3+2)

  方法探究2

  ⑴(3+2)(3-2)

  ⑵(3+25)2

  归纳:

  尝试练习:

  ⑴(5+1)(5-1)

  ⑵(7+5)(5-7)

  ⑶(25-32)(25+32)

  ⑷(a+b)(a-b)

  ⑸(3-2)2

  ⑹(32-45)2

  ⑺(3-22)(22-3)

  ⑻(a-b)2

  ⑼(1-23)(1+23)-(1+3)2

  ⑽(3+2-5)(3+2+5)

  例题解析

  1、计算:(22-3)20xx(22+3)20xx。

  2、若x=10-3,求代数式x2+6x+11的值。

  3、若x=11+72,y=11—72,求代数式x2-xy+y2的值。

  内反馈

  1、计算12(2-3)=

  2、计算⑴(2+3)(2-3)=

  ⑵(5-2)20xx(5+2)20xx=

  3、计算:

  ⑴12(75+313-48)

  ⑵(1327-24-323)12

  ⑶(23-5)(2+3)

  ⑷(5-3+2)(5+3-2)

  ⑸(312-213+48)÷23

  4、已知a=3+2,b=3-2,求下列各式的值。

  ⑴a2-b2

  ⑵1a-1b

  ⑶a2-ab+b2

  5、若x=3+1,求代数式x2-2x-3的值。

数学初中教案6

从不同方向看

  一、教学目标

  ( 一 ) 知识目标

  1. 进一步熟练尺规作图 .

  2. 掌握尺规的基本作图:画线段的垂直平分线,画直线的垂线 .

  3. 尺规作图的简单应用,解尺规作图题,会写已知、求作和作法 .

  ( 二 ) 能力目标

  1、培养学生动手操作能力 .

  2、培养学生探索、分析、解决问题的能力 .

  ( 三 ) 情感目标

  在学生动手操作的过程中,激发学生的求知欲,增强学生对数学的应用意识,培养学生主动探索,敢于实践的科学精神,培养学生合作交流和创新精神 .

  二、教学重点

  画图,写出作图的主要画法 .

  三、教学难点

  写出作图的主要画法,应用尺规作图 .

  四、教学方法

  引导法,演示法,分析法,探索法 .

  五、教学用具

  多媒体,实物展示台,直尺,圆规 .

  六、教学过程

  ( 一 ) 引入

  我们已熟悉尺规的两个基本作图:画线段,画角 .

  那么利用尺规还能解决什么作图问题呢 ?

  ( 二 ) 新课

  1. 画线段的垂直平分线 .

  请同学们探索用直尺和圆规准确地画出一条线段的垂直平分线 .

  已知线段 a ,用直尺和圆规准确地画出已知线段 a 的.垂直平分线 .

  解决这一问题,要利用好线段垂直平分线的性质 .

  请同学们讨论、探索、交流、归纳出具体的作图方法 .

  例 1 已知底边及底边上的高作等腰三角形 .

  分析:要完成这个作图,先作出底边,再作底边的垂直平分线,取高,最后完成三角形 .

  已知:底边 a 、及底边上的高 h.( 画出两条线段 a 、 h)

  求作:△ ABC ,使得一底边为 a 、底边上的高为 h.

  2. 画直线的垂线 .

  请同学们探索用直尺和圆规准确地画出一条直线的垂线 .

  请同学们讨论、探索、交流、归纳出具体的作图方法 .

  实际上,画出一条直线的垂线,就是转化为画线段的垂直平分线 .

  例 2 过直线外一点作直线的垂线 .

  已知:直线 a 、及直线 a 外一点 A.( 画出直线 a 、点 A)

  求作:直线 a 的垂线直线 b ,使得直线 b 经过点 A.

  作法: (1) 以点 A 为圆心,以适当长为半径画弧,交直线 a 于点 C 、 D.

  (2) 以点 C 为圆心,以 AD 长为半径在直线另一侧画弧 .

  (3) 以点 D 为圆心,以 AD 长为半径在直线另一侧画弧,交前一条弧于点 B.

  (4) 经过点 A 、 B 作直线 AB. 直线 AB 就是所画的垂线 b.( 如图 )

  3. 探索如何过一点、两点和不在同一直线上的三点作圆 .

  思考:如何解决这一实际问题 ? 下面我们共同探寻解决这一问题的办法 .

  练习教材练习第 1 、 2 题 .

  探究 1 :过一个已知点 A 如何作圆 ?( 如图,让学生动手去完成 )

  学生讨论并发现:过点 A 所作圆的圆心在哪儿?半径多大?可以作几个这样的圆? ( 圆心不定,半径不定,可以作无数个圆 )

  探究 2 :过已知两点 A 、 B 如何作圆 ?( 如图,学生动手去完成 )

  学生继续讨论并发现:它们的圆心到 A 、 B 两点的距离怎样?能用式子表示吗?圆心在哪里?过点 A 、 B 两点的圆有几个? (OA=OB ,圆心在直线 AB 的垂直平分线上,有无数个圆 )

  探究 3 :过同一平面内三个点的情况会怎样呢 ?

  分两种情况研究:

  (1) 求作一个圆,使它经过不在一直线上三点 A 、 B 、 C.

  已知:不在一直线上三点 A 、 B 、 C ,求作一个圆,使它同时经过点 A 、 B 、 C.( 学生口述作法,教师示范作图过程 )

  学生讨论并发现:这样一共可作几个圆?圆心在哪里?圆心到 A 、 B 、 C 三点的距离怎样? ( 可作一个圆,圆心是线段 AB 、 AC 、 BC 的垂直平分线的交点,圆心到 A 、 B 、 C 三点距离相等 )

  (2) 过在一直线上的三点 A 、 B 、 C 可以作几个圆 ?( 不能作出 )

  发现结论:不在同一直线上的三点确定一个圆:

  ( 三 ) 小结

  请同学们自己对本课内容进行小结 .

  ( 四 ) 作业

  教材习题 24.4 第 3 、 4 题 .

数学初中教案7

  一、教学目标:

  1.理解并掌握矩形的判定方法.

  2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

  二、重点、难点

  1.重点:矩形的判定.

  2.难点:矩形的判定及性质的综合应用.

  三、例题的意图分析

  本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.

  四、课堂引入

  1.什么叫做平行四边形?什么叫做矩形?

  2.矩形有哪些性质?

  3.矩形与平行四边形有什么共同之处?有什么不同之处?

  4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的`是矩形像框吗?看看谁的方法可行?

  通过讨论得到矩形的判定方法.

  矩形判定方法1:对角钱相等的平行四边形是矩形.

  矩形判定方法2:有三个角是直角的四边形是矩形.

  (指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)

  五、例习题分析

  例1(补充)下列各句判定矩形的说法是否正确?为什么?

  (1)有一个角是直角的四边形是矩形; ()

  (2)有四个角是直角的四边形是矩形; ()

  (3)四个角都相等的四边形是矩形; ()

  (4)对角线相等的四边形是矩形; ()

  (5)对角线相等且互相垂直的四边形是矩形; ()

  (6)对角线互相平分且相等的四边形是矩形; ()

  (7)对角线相等,且有一个角是直角的四边形是矩形; ()

  (8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()

  (9)两组对边分别平行,且对角线相等的四边形是矩形. ()

  指出:

  (l)所给四边形添加的条件不满足三个的肯定不是矩形;

  (2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.

  例2 (补充)已知 ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.

  分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.

  解:∵ 四边形ABCD是平行四边形,

  AO= AC,BO= BD.

  ∵ AO=BO,

  AC=BD.

  ABCD是矩形(对角线相等的平行四边形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  BC= (cm).

  例3 (补充) 已知:如图(1), ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.

  分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.

  证明:∵ 四边形ABCD是平行四边形,

  AD∥BC.

  DAB+ABC=180.

  又 AE平分DAB,BG平分ABC ,

  EAB+ABG= 180=90.

  AFB=90.

  同理可证AED=BGC=CHD=90.

  四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).

  六、随堂练习

  1.(选择)下列说法正确的是( ).

  (A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形

  (C)对角线互相平分的四边形是矩形 (D)对角互补的平行四边形是矩形

  2.已知:如图 ,在△ABC中,C=90, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.

  七、课后练习

  1.工人师傅做铝合金窗框分下面三个步骤进行:

  ⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;

  ⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;

  ⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;

  2.在Rt△ABC中,C=90,AB=2AC,求A、B的度数.

数学初中教案8

  教学目的:

  理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

  重点、难点

  1、 重点:弄清应用题题意列出方程。

  2、 难点:弄清应用题题意列出方程。

  教学过程

  一、复习

  1、 什么叫一元一次方程?

  2、 解一元一次方程的理论根据是什么?

  二、新授。

  例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

  先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。

  分析:设应从A盘内拿出盐x,可列表帮助分析。

  等量关系;A盘现有盐=B盘现有盐

  完成后,可让学生反思,检验所求出的解是否合理。

  (盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)

  培养学生自觉反思求解过程和自觉检验方程的解是否正确的.良好习惯。

  例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

  引导学生弄清题意,疏理已知量和未知量:

  1.题目中有哪些已知量?

  (1)参加搬砖的初一同学和其他年级同学共65名。

  (2)初一同学每人搬6块,其他年级同学每人搬8块。

  (3)初一和其他年级同学一共搬了400块。

  2.求什么?

  初一同学有多少人参加搬砖?

  3.等量关系是什么?

  初一同学搬砖的块数十其他年级同学的搬砖数=400

  如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程

  6x+8(65-x)=400

  也可以按照教科书上的列表法分析

  三、巩固练习

  教科书第12页练习1、2、3

  第l题:可引导学生画线图分析

  等量关系是:AC十CB=400

  若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再

  由等量关系就可列出方程:

  6(65-x)+8x=400

  四、小结

  本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

  五、作业

数学初中教案9

  一、素质教育目标

  (一)知识教学点

  1.使学生理解多项式的概念.

  2.使学生能准确地确定一个多项式的次数和项数.

  3.能正确区分单项式和多项式.

  (二)能力训练点

  通过区别单项式与多项式,培养学生发散思维.

  (三)德育渗透点

  在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想.

  (四)美育渗透点

  单项式和多项式在前二章,特别是第一章已有新接触,本节课来研究多项式的概念可谓水到渠成,体现了数学的结构美

  二、学法引导

  1.教学方法:采用对比法,以训练为主,注重尝试指导.

  2.学生学法:观察分析→多项式有关概念→练习巩固

  三、重点、难点、疑点及解决办法

  1.重点:多项式的概念及单项式的联系与区别.

  2.难点:多项式的次数的确定,以及多项式与单项式的联系与区别.

  3.疑点:多项式中各项的符号问题.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  教师出示探索性练习,学生分析讨论得出多项式有关概念,教师出示巩固性练习,学生多种形式完成.

  七、教学步骤

  (一)复习引入,创设情境

  师:上节课我们学习了单项式的有关概念,同学们看下面一些问题.

  (出示投影1)

  1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数.

  , , ,2, , , ,

  2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________.

  学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励.

  【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容.

  师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?

  学生活动:同座进行讨论,然后选代表回答.

  师:谁能把1题中不是单项式的式子读出来?(师做相应板书)

  学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充.

  (二)探索新知,讲授新课

  师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式.

  [板书]3.1整式(多项式)

  学生活动:讨论归纳什么叫多项式.可让学生互相补充.

  教师概括并板书

  [板书]多项式:几个单项式的和叫多项式.

  师:强调每个单项式的符号问题,使学生引起注意.

  (出示投影2)

  练习:下裂代数式 , , , , , ,

  , , 中,是多项式的有:

  ___________________________________________________________.

  学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论.

  【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正.

  师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正.

  师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式.

  [板书]

  学生活动:同桌讨论,, , ,应怎样称谓,然后找学生回答.

  师:给予归纳,并做适当板书:

  [板书]

  学生活动:通过上例,学生讨论多项式的'项、次数,然后选代表回答.

  根据学生回答,师归纳:

  在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如 中, 这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项.

  [板书]

  【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力.

  (三)尝试反馈,巩固练习

  (出示投影3)

  1.填空:

  2.填空:

  (1) 是_________次__________项式; 是_________次_________项式; 的常数项是___________.

  (2) 是_________次________项式,最高次数是___________,最高次项的系数是__________,常数项是___________.

  学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正.

  【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言.

  (四)归纳小结

  师:今天我们学习了《整式》一节中“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数.

  归纳:单项式和多项式统称为整式.

  [板书]

  说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做了述板书,使所学知识纳入知识系统.

  巩固练习:

  (出示投影4)

  下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________.

  学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏.

  【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系.

  (五)变式训练,培养能力

  (出示投影5)

  1.单项式 , , 的和_________,它是__________次__________项式.

  2. 是_______次________项式 是__________次_________项式,它的常数项_________.

  3. 是________次________项式,最高次项是_________,最高次项的系数是_________,常数项是__________.

  4. 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).

  学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言.

  师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的.

  【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识.

  自编题目练习:

  每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确.

  【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力.

  师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式.

  学生活动:学生边回答师边板书,然后学生讨论是否符合要求.

  【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力.

  八、随堂练习

  1.判断题

  (1)-5不是多项式( )

  (2) 是二次二项式( )

  (3) 是二次三项式( )

  (4) 是一次三项式( )

  (5) 的最高次项系数是3( )

  2.填空题

  (1)把上列代数式分别填在相应的括号里

  , , ,0, , ,

  ; ;

  ; ;

  .

  (2)如果代数式 是关于 的三次二项式则 , .

  九、布置作业

  (一)必做题:课本第149页习题3.1A组12.

  (二)选做题:课本第150页习题3.1B组3.

  十、板书设计

  随堂练习答案

  1.√ × × √ ×

  2.(1)单项式 ,多项式 ;

  整式 ;

  二项式 ;

  三次三项式 ;

  (2) , .

  作业答案

  教材P.149中A组12题:(1)三次二项式 (2)二次三项式

  (3)一次二项式 (4)四次三项式

数学初中教案10

  教学目标:

  利用代数与几何图形相结合的思想列方程解应用题;并创设情景解决生活中的数学问题。

  重点难点:

  知识的综合灵活应用

  情感目标:

  激发学生创新思维,培养学生解决问题的能力。

  教学过程:

  (一) 复习:

  列方程解应用题的解题步骤。

  (二) 正课:

  本节课我们将研究一下如何用列方程的思想方法解决与几何知识有关的应用题。

  例1:在宽为20米长为30米的矩形地面上,修筑同样的'两条互相垂直的道路,余下部分作耕地,使耕地面积为375平方米,问道路宽为多少米?

  分析:如图1余下部分的面积375M2是等量关系。但被分为四块求面积有困难。

  不妨把道路向两边移,这样余下部分为一个矩形,求面积就比较容易。

  解:略。

  练习:《考纲》

  例2:有一块矩形耕地,相邻两边的长度如图所示,要在这块地上分别挖如图的4条横向水渠和2条纵向水渠,且使水渠的宽相等,余下的可耕地面积为9600平方米。那么水渠应挖多宽?

  例3:在矩形ABCD中,放入8个形状大小相同的小长方形,求阴影部分面积。

  练习:《考纲》P85

  思考:在一个50米长30米宽的矩形空地上要设计改造成为花坛,并要使花坛所要的面积为荒地面积的一半,诗给出你的设计方案。

  小结:我们常用列方程的思想来处理几何图形的计算问题,这种解法也是数形结合思想方法的一种应用。

数学初中教案11

  公开课教案

  授课时间: 20xx.11.17早上第二节 授课班级:初三、1班 授课教师:

  教学内容: 7.7 直线和圆的位置关系

  教学目标:

  知识与技能目标:1、理解直线和圆相交、相切、相离的概念。

  2. 初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。

  过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思

  想,培养学生观察、分析、概括、知识迁移的能力;

  2. 通过例题教学,培养学生灵活运用知识的解决能力。

  情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的.一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

  [1][2][3][4][5][6][7][8][9][10] ... 下一页 >>

数学初中教案12

  教学内容

  24。2圆的切线(1)

  教学目标 使学生掌握切线的识别方法,并能初步运用它解决有关问题

  通过切线识别方法的学习,培养学生观察、分析、归纳问题的能力

  教学重点 切线的识别方法

  教学难点 方法的理解及实际运用

  教具准备 投影仪,胶片

  教学过程 教师活动 学生活动

  (一)复习 情境导入

  1、复习、回顾直线与圆的三 种位置关系。

  2、请学生判断直线和圆的位置关系。

  学生判断的过程,提问:你是怎样判断出图中的直线和圆相切的?根据学生的回答,继续提出 问题:如何界定直线与圆是否只有一个公共点?教师指出,根据切线的定义可以识别一条直线是不是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切 线的其它方法。(板书课题) 抢答

  学生总结判别方法

  (二)

  实践与探索1:圆的切线的判断方法 1、由上面 的复习,我们可以把上节课所学的切线的定义作为识别切线的方法1——定义法:与圆只有一个公共点的直线是圆的切线。

  2、当然,我们还可以由上节课所学的用圆心到直线的距离 与半径 之间的关系来判断直线与圆是否相切,即:当 时,直线与圆的位置关系是相切。以此作为识别切线的方法2——数量关系法:圆心到直线的距离等于半径的直线是圆的切线 。

  3、实验:作⊙O的半径OA,过A作l⊥OA可以发现:

  (1)直线 经过半径 的外端点 ;

  (2)直线 垂直于半径 。这样我们就得到了从位 置上来判断直线是圆的切线的方法3——位置关系法:经过半径的外端且垂直于这条半径的直线是圆的切线。 理解并识记圆的切线的几种方法,并比较应用。

  通过实验探究圆的切线的位置判别方法,深入理解它的两个要义。

  三、课堂练习

  思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?

  请学生回顾作图过程,切线 是如何作出来的?它满足哪些条件? 引导学生总结出:①经过半径外端;②垂直于这条半径。

  请学生继续思考:这两个条件缺少一个行不行? (学生画出反例图)

  (图1) (图2) 图(3)

  图(1)中直线 经过半径外端,但不与半径垂直; 图(2)中直线 与半径垂直,但不经过半径外端。 从以上两个反例可以看出,只满足其中一个条件的直线不是圆的`切线。

  最后引导学生分析,方法3实际上是从前一节所讲的“圆 心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端且垂直于这条半径的直线是圆的切线”这种形式。 试验体会圆的位置判别方法。

  理解位置判别方法的两个要素。

  (四)应用与拓展 例1、如图,已知直线AB经过⊙O上的点A,并且AB=OA,OBA=45,直线AB是⊙O的切线吗?为什么?

  例2、如图,线段AB经过圆心O,交⊙O于点A、C,BAD=B=30,边BD交圆于点D。BD是⊙ O的切线吗?为什么?

  分析:欲证BD是⊙O的切线,由于BD过圆上点D,若连结OD,则BD过半径OD的外端,因此只需证明BD⊥OD,因OA=OD,BAD=B,易证BD⊥OD。

  教师板演,给出解答过程及格式。

  课堂练习:课本练习1-4 先选择方法,弄清位置判别方法与数量判别方法的本质区别。

  注意圆的切线的特征与识别的区别。

  (四)小结与作业 识 别一条直线是圆的切线,有 三种方法:

  (1)根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;

  (2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线;

  (3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,

  说明一条直线是圆的切线,常常需要作辅助线,如果 已知直线过圆上某 一点,则作出过 这一点的半径,证明直线垂直于半径即可(如例2)。

  各抒己见,谈收获。

  (五)板书设计

  识别一条直线是圆的切线,有三种方法: 例:

  (1 )根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;

  (2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆 的切线;

  (3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,

  说明一条直线是圆的切线,常常需要作辅助线,如果已知直线过圆上某一点,则作出过 这一点的半径,证明 直线垂直于半径

  (六)教学后记

  教学内容 24。2圆的切线(2) 课型 新授课 课时 执教

  教学目标 通过探究,使学生发现、掌握切线长定理,并初步长定理,并初步学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。

  教学重点 切线长定理及其应用,三角形的内切圆的画法和内心的性质。

  教学难点 三角形的内心及其半径的确定。

  教具准备 投影仪,胶片

  教学过程 教师 活动 学生活动

  (一)复习导入:

  请同学们回顾一下,如何判断一条直线是圆的切线?圆的切线具有什么性质?(经过半径外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径。)

  你能说明以下这个问题?

  如右图所示,PA是 的平分线,AB是⊙O的切线,切点E,那么AC是⊙O的切线吗?为什么?

  回顾旧知,看谁说的全。

  利用旧知,分析解决该问题。

  (二)

  实践与探索 问题1、从圆外一点可以作圆的几条切线?请同学们画一画。

  2、请问:这一点 与切点的 两条线段的长度相等吗?为什么?

  3、切线长的定义是什么?

  通过以 上几个问题的解决,使同学们得出以下的结论:

  从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心的连线

  平分两条切线的夹角。 在解决以上问题时,鼓励同学们用不同的观点、不同的知识来解决问题,它既可以用书上阐述的对称的观点解决,也可以用以前学习的其他知识来解决问题。

  (三)拓展与应用 例:右图,PA、PB是,切点分别是A、B,直线EF也是⊙O的切线,切点为P,交PA、PB为E、F点,已知 , ,(1)求 的周长;(2)求 的度数。

  解:(1)连结PA、PB、EF是⊙O的切线

  所以 , ,

  所以 的周长 (2)因为PA、PB、EF是⊙O的切线

  所以 , ,,

  所以

  所以

  画图分析探究,教学中应注重基本图形的教学,引导学生发现基本图形,应用基本图形解决问题。

  (四)小结与作业 谈一下本节课的 收获 ? 各抒己见,看谁 说得最好

  (五)板书设计

  切线(2)

  切线长相等 例:

  切线长性质

  点与圆心连 线平分两切线夹角

  (六)教学后记

数学初中教案13

<strong>4</strong>

  一、教学目标

  1.通过实物或模型直观认识柱体、锥体、球体.

  2.通过观察,体验几何图形的抽象过程.

  二、教学重点

  正确区分圆柱、棱柱、圆锥、棱锥.

  三、教学难点

  在观察中体验数学概念的抽象过程.

  四、教学用具

  多媒体课件,投影仪,圆柱、棱柱、圆锥、棱推、球等模型.

  五、学法引导

  动手实践,自主探索,合作交流.

  六、教学过程

  (一)学生课前准备

  1.观察生活中的实物,比较它们形状的相似与不同.

  2.收集各种形状的小物体,在收集的过程中感受、认识立体图形.

  (二)新课引入,激发兴趣

  1.今天这堂课,老师将同大家一起来认识生活中的立体图形,在课前老师让同学们收集一些各种形状的物体,现在请同学们拿出来放在桌上,互相看一看有些什么形状的物体,比一比看谁收集的`种类最多.(学生展示收集的物体,比一比,议一议)

  2.邓老师也准备了一些图片,想看吗?请同学们认真观察、思考,这些建筑物是什么样的形状?(多媒体展示世界著名建筑物图片.学生欣赏建筑物之雄伟壮观,感受几何图形之美,引发学生对几何学习的兴趣)

  3.学生畅所欲言观后感想.(学生互相讨论,然后全班交流)

  师:同学们都说得非常好,从中老师看到了同学们对学习几何的兴趣,有没有信心学好?(有)好,老师将和同学们一起努力.我们今天就从一些比较规则的、基本的立体图形认识起.同学们回忆一下,从收集的物体和刚才的建筑物中,你想到了哪些立体图形?

  (三)认识圆柱、棱柱、圆锥、棱锥、球体等五种图形

  1.认识五种立体图形.

  学生分四人一组,根据图形模型,通过观察、比较、讨论、探索,归纳图形的主要特征与区别,共同完成下列问题.

  (l)这些图形之间有什么类似的地方?

  (2)区别在哪里?

  (3)填写下表:

  2.认识多面体.

  请同学们观察比较下面两组图形,完成以下问题:

  (l)有何共同特点?

  (2)有何区别?

  (3)请给它们各取一个名.

  (4)观察两组图形的各面,有何共同之处?由此得出多面体的概念.

  (四)巩固练习

  1.问答练习.

  (l)学生问答:两人一组,一学生问生活中比较规则的物体,另一学生答相类似的立体图形,然后交换问答.

  (2)师生问答:老师拿实物,学生回答相类似的立体图形;老师说五种立体图形,学生举起收集的实物中类似的图形;老师说五种立体图形,学生回答生活中与之相类似的物体.

  2.比一比,看谁做得又对又快.

  (1)写出下列立体图形的名称.

  (2)下列图形中为圆柱的是().

  (3)把图形与对应的图形名称用线连接.

  3.实际操作.

  同学们想不想亲手做一个立体图形?

  请用橡皮泥任做一个你喜欢的立体图形,比一比,看谁做得又快又像?

  (学生动手做)

  把你们的作品举起来!看谁做得最像,大家评一评.

  我看同学们意犹未尽,还没玩够,没关系,下课之后还可以接着玩,也可用黄泥巴做大一点,干了之后涂上颜料,请美术老师指点指点,好不好?

  (五)自我小结

  通过这节课的学习,你有哪些收获?还有什么问题?

  1.同桌互相交流.

  2.全班交流.

  3.教师点评:这节课同学们有这么多收获,而且学得比较轻松愉快,邓老师真是很高兴.看来几何知识并不神秘,只要你留心观察,勤于动手动脑,在我们生活中处处都有丰富多彩的几何图形等着你们去发现.

  (六)课后作业

  请你自己制作一个底面大小和高都相等的圆柱和圆锥形容器,分别装满沙子后再倒出来,测量两个容器所盛沙子的体积,你能发现它们的体积有什么关系?重复几次,你的结果一致吗?

数学初中教案14

  教学目标:

  1、掌握轴对称性质;

  2、会利用轴对称的性质,作对称点,对称图形等。

  教学重点:

  会利用轴对称性质作对称点、对称图形等。

  教学过程:

  一、创设情境:

  1、实践、操作:

  前面我们已经学过轴对称和轴对称图形,那么它们到底具有一些什么性质呢?下面我们一起来研究。

  取一张长方形的纸片,按下面步骤做一做。

  将长方形纸片对折,折痕为l,

  (1)在纸上画△ABC;

  (2)用针尖沿△ABC各边扎几个小孔

  (3)将纸展开,连续AA’、BB’、CC’

  2、讨论、探究:

  线段AA’、BB’、CC’与折痕l有什么关系?

  二、新课讲解:

  1、交流、总结:

  (1)垂直于线段并且平分线段的直线叫做线段的垂直平分线。

  (2)如果两个图形关于某条直线成轴对称,那么对称轴是对应点边线的垂直平分线。

  (3)关于某条直线成轴对称的两个图形是全等形;

  2、动手、操作

  (1)打出下列成轴对称的两个图形的对应点、并用测量的方法难对应点的边线被对称轴垂直平分;

  (2)说出图中相等的线段和角。

  线段:AD=EF BC=FG

  AD=EH CD=GH

  角: ∠A=∠C ∠B=∠F

  ∠C=∠G ∠D=∠H

  3、操作、实践:

  (1)按下列要求,作点A关于直线l的.对称点A’ l

  ①过点A作AB⊥l,垂点头为点B;

  ②延长AB至A’,使A’B=AB。

  如图,点A’就是点A关于直线l的对称点。

  (2)请你作出下图中线段AB关于直线l的对称线段A’B’。

  (说明:作对称线段其实就是作两个对称点就行了)

  (3)已知点P和点P’关于一条直线对称,请你画出这条对称轴。

  4、心得交流

  讨论交流上述各图形作法要领、注意点,并口述画法基本步骤。

  三、课堂练习:

  1、画出下列图形对称轴,找出对称点。

  2、下图是两个关于某条直线成轴对称的图形,请你画出它们的对称轴。

  四、本节课的收获。

  (1)我能找到轴对称中的对称点;

  (2)会画出对称点、对称线段;

  (3)能找到对称轴

  五、作业 :P12 1-3

数学初中教案15

  一、教学目标

  1。知识与技能:

  (1)、理解并掌握矩形的性质定理及推论;

  (2)、会用矩形的性质定理及推论进行推导证明;

  (3)、会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明计算。

  2。过程与方法:

  (1)、通过教学过程中同学的测量、交流、讨论,并运用课件的直观形象性,加深对矩形性质定理及推论的理解和应用。

  (2)、体验矩形性质定理及推论的发现过程,探索证明性质定理及推论的方法。

  (3)、感受新旧知识及几何代数之间的紧密联系。

  3。情感态度与价值观:

  (1)、在观察、测量、猜想、归纳、推理的过程中,体。验数学活动充满探索性和创造性,感受证明的必要性、证明过程的严谨性及结论的确定性。

  (2)、树立用观察、实验、猜想、归纳出结论,并用逻辑推理证明定理的意识。

  (3)、进一步认识软件《几何画板》的。作图、测量功能,体验智能工具的快速、准确及其规范。

  (4)、从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的,培养

  学生辨证唯物主义观点。

  (5)、在讨论和回答问题过程中,敢于发表自己的观点,尊重他人的见解,能从交流中获益。

  二、学习重点、难点:

  学习重点:矩形性质定理及推论。

  学习难点:矩形性质定理、推论及特殊三角形的性质的综合应用。

  三、教学方法及手段:

  教学方法:探究发现法为主,辅以讲授法。

  教学手段:PPT及几何画板演示辅以板书。

  四、教学设计:

  本节课依据新课标“在第三学段(7——9年级)中,学生将经历探索物体与图形的基本性质、变换、位置关系的过程,掌握三角形、四边形、圆的'基本性质以及平移、旋转、对称、相似的基本性质,体会证明的必要性,能证明三角形和四边性的基本性质,掌握基本的推理技能”的要求。首先课前让学生以小组为单位调查实际生产生活中应用矩形的实例,培养学生的小组协作和实际调查能力,课上从矩形的定义和平行四边形的性质引入,提出问题,让学生猜想矩形应具有的性质,调动学生的思维积极性,激发探究欲望;教学过程中充分利用学生手中的矩形书本和测量工具以及几何画板课件演示,让学生通过观察、测量得出矩形性质后,再引导学生进行推理证明及应用,帮助他们在自主探索和合作交流过程中真正理解和掌握矩形性质定理及推论,体验数学学习过程中的探索性和挑战性以及推理的严谨性。通过正确,帮助学生树立合作意识和学好数学的自信心。

【数学初中教案】相关文章:

数学初中教案10-04

初中数学教案10-26

初中数学优秀教案11-18

【精华】初中数学教案09-09

【荐】初中数学教案01-13

初中数学教学教案(精选30篇)07-12

初中数学教案(精选16篇)05-08

(推荐)初中数学教案15篇08-27

初中数学教案[精华15篇]07-15

优质初中数学《完全平方公式》教案01-23