物理学毕业论文

本科生量子力学教学改革

时间:2022-10-05 21:46:22 物理学毕业论文 我要投稿
  • 相关推荐

本科生量子力学教学改革

  本科生量子力学教学改革【1】

本科生量子力学教学改革

  摘 要:量子力学推进了近百年来的科技发展,量子力学课程是物理学类本科生的重要基础课程,也是公认比较难的一门学科,也极大影响了学生对物理学的兴趣,以及今后的研究方向和从事的工作。

  该文将从提升教师的自身修养和提高学生的学习主观能动性两方面来探索如何提高本科生量子力学课程的教学效果。

  关键词:量子力学 教学改革 物理学 本科生

  随着科学技术的快速发展,使得与物理类相关的交叉学科异军突起,和量子力学密切相关的量子通信[1],量子计算[2]量子调控[3]等前沿研究方向深刻影响着人们的日常生活,也成为未来物理学走向应用的重要方向。

  因此,为了培养的本科生能够更好服务社会,为时代提供科技人才支撑,提高本科生量子力学[4]的教学效果变得尤为重要。

  1 教师应该引导学生主动思考

  要培养出紧跟时代步伐的优秀学生,量子力学的教师必须紧跟时代步伐。

  在20世纪上半叶,量子力学的基础理论及整体框架已经成熟,但物理类专业本科生量子力学的教学大纲也仅仅要求学生能够建立薛定谔方程,在动量和位置表象求解薛定谔方程,引入算符以及电子的自旋这些量子力学所特有的物理量[5]。

  如果仅仅照本宣科地讲,而不去引导学生思考问题,培养的学生也就仅仅会求解量子力学课程最基本的薛定谔方程,更不会把量子力学和其他的课程内容联系起来,串成一条主线。

  作为教师,应该能够启发学生去思考,如讲到波尔定态假设的时候要求电子在固定的轨道运动系统的能量不减少这一基本假定的时候,就可以引导学生思考,为什么电子加速运动能量一定会减少,这就要用到电动力学的知识,变化的电场产生磁场,变化的磁场产生电子,形成了电磁波,电场波就会携带能量,这样也可以引导学生回忆起来其他的课程,把所有的物理知识串联起来,提升对物理图像和物理本质的认识。

  2 通过量子力学的前沿进展激发学生的学习兴趣

  量子力学的基础理论虽然已经基本完成,它的理论应用却还有待开发,学生学习时候的普遍思想是现在所学的内容都得到了解决。

  但是量子力学则不然,要告诉学生,现在的课程内容虽然已经形成固定的教材,而且国内外教材有很多,但很多问题不同的教材可能有不同的表述方式,鼓励学生多阅读各种不同的教材和专著,同时要告诉学生量子力学的应用方向和延伸现在仍然在持续更新,要广泛阅读网络资源,特别是外文文献,比如发表在Arxiv,Nature,Science,Reviews of Modern Physics,Physical Review Letters等期刊上的文献。

  在教学中如果涉及到现在科学研究应用很广泛的知识点,要引导学生去学会应用,如:波函数可以用无穷多的平面波进行展开这一基本原理,而这一简单的原理正是现在凝聚态物理中K・P理论[6]的精髓,现在最新的科研成果中仍然可以发现其解决问题的强大能力;而讲到用波函数来描述量子力学的波粒二象性后,介绍了有意义是波函数的模平方,即粒子在某一位置出现的几率,通过密度泛函理论[7],可以通过波函数得到几乎所有的物理性质,这正是第一性原理计算的精髓所在。

  当然,还有很多类似的最新研究成果,如:通过量子力学的纠缠光子对实现量子通信,波函数的叠加原理实现量子计算等。

  因此,这对量子力学教师的要求更高,要能够紧跟科技前沿,做好一个引路人,从事量子力学的教师一定要扎根在科学研究的一线,而且要求研究方向和量子力学密切相关,如:凝聚态物理、量子信息等。

  3 教学方式的改革

  量子力学的基本理论比较抽象,难以理解,理论本身一些内容不能直接用实验验证,如:薛定谔方程等。

  量子力学目前的理论形式多样:如包含薛定谔波动力学、海森堡矩阵力学、路径积分理论等。

  如果单纯的是教师讲,学生被动的接受效果不会太好,特别是讲了一些知识点后,加上例题讲解,学生都能够听懂,但是自己独立完成的时候仍然是一头雾水。

  为此,我试探着给学生们分组,4~5个人一个小组,小组采用自由组合的方式,每次同一小组的同学坐在一起,当讲完一个知识点或者几个知识点后,提出问题,让学生以小组的形式进行讨论,教师轮流进入到每一个小组中去参与学生的讨论。

  这样可以分享彼此的理解,从而加深对量子力学问题的理解。

  4 注重课后的阅读和交流

  上课时间必然受到学时数目的影响,正如推出量子力学的正统诠释的哥本哈根学派的领袖人物玻尔曾说:“如果谁没被量子力学搞得头晕,那他就一定是不理解量子力学。

  ”因此,要更加充分激发学生的兴趣,使得学生主动花更多的时间进行学习和讨论,为此,我建立了一个QQ群,通过加平时成绩的方式鼓励学生在群里面讨论。

  此外,还可以把我看到的最新物理内的相关新闻,量子力学的一些研究前沿分享到QQ群里面,使得学生在玩手机的时候即可以了解到量子力学的前沿方向,此外还把课件分享到群里供同学们下载,并把课件通过美化大师转为长图片,这样学生可以把知识点保存在手机中,可以充分调动学生的零星时间来学习。

  同时也鼓励同学们参加校内外的学术交流,也可以观看网络上的视频讲座。

  通过多渠道,多媒体等各种方式拓展视野,开拓眼界,提升学生的学术水平。

  5 结语

  综上所述,使得本科生能够学习好量子力学这一门重要的基础课程是一个系统工程,需要教师和学生的共同努力。

  该文从上述4��方面提出了一种使得学生能够学习好量子力学的思路,如果上述4个方面能够得到完美解决,不仅可以提高学生的学习积极性,调动学生的主观能动性,也可以激发他们对科学研究的探索,同时将推进物理方向的人才培养。

  参考文献

  [1] 吴华,王向斌,潘建伟.量子通信现状与展望[J].中国科学:信息科学,2014,44(3):296-311.

  [2] 周正威,涂涛,龚明,等.量子计算的进展和展望[J].物理学进展,2009,29(2):522.

  [3] 张季,姚洪斌.双色脉冲场量子调控H2+的光电离动力学[J].科技导报,2016,34(7):90.

  [4] 田光善.关于本科生量子力学教学的一些体会[J].大学物理,2011,20(3):52.

  [5] 曾谨言.量子力学:卷Ⅰ[M].4版.北京:科学出版社,2007.

  [6] 靳钊,乔丽萍,郭晨,等.单轴应变Si(001)任意晶向电子电导有效质量模型[J].物理学报,2013,62(5):515-521.

  [7] 黄美纯.密度泛函理论的若干进展[J].物理学进展,2000,

  研究生教育课程高等量子力学教学改革【2】

  摘 要 研究生阶段既是知识深化的学习过程,也是科研能力培养的过程,学习知识为科学研究打下基础。

  本文从现阶段研究生授课模式存在的问题出发,探讨了高校研究生高等量子力学教学的必要性,在教学过程中引入研究性教学模式,提高教学质量,使学生在掌握量子力学基本原理的基础上,综合素质能力、科研创新能力得到极大的提高。

  关键词 量子力学 教学改革 创新能力 研究性教学

  Abstract Postgraduate both the learning process to deepen the knowledge of the process is scientific ability, knowledge of scientific basis. From Graduate Teaching Mode existing problems, discusses the necessity of quantum mechanics graduate students in higher education, research teaching model introduced in the teaching process, improve the quality of teaching so that students master the basic principles of quantum mechanics, based on general ability, innovation ability has been greatly improved.

  Key words Quantum Mechanics; teaching reform; innovative ability; research teaching

  自上个世纪80年初期恢复研究生教育,我国的研究生教育进入了蓬勃发展的时期。

  ①随着我国高等教育的发展,研究生教育规模的也迅速扩大,研究生教育质量已成为一个全社会关注的焦点问题。

  我国研究生的素质关系到国家的未来发展,研究生教育是为国家培养现代化建设、发展科技培养高水平、高层次人才;研究生教育是我国站上世界知识经济高点的重要支持;同时也是高校实现由教学型向研究型转变的重要基础。

  研究生教育不同于本科生教育,研究生教育不仅包含课程教学,同时包含了社会实践、学位论文等诸多环节。

  ②然而作为科研能力、自主创新能力发展的基础――课程教学不仅要传授知识,更重要的是要指导研究生思考,是提高研究生培养质量的根本。

  研究生教学质量是整个研究生教育的一个重要部分,如何合理利用现有教学资源条件,使得研究生教学质量能够稳步提高,则成为研究生管理的首要解决问题之一。

  自上个世纪80年代以来,高等教育改革逐渐兴起,其主要目标就是培养创新型人才,教育界越来越多地关注教学方法创新研究。

  首先,研究性教学,是一种能有效引导学生主动探究、培养学生创新能力的教学方式,引起全世界各地的教育及其相关部门的关注。

  目前,教育部实施研究生科研创新项目研究计划, 现在全国已有100多所大学参加这项计划。

  其次,在过去的几十年中,国内外在总结以前高等教育成果与不足的基础上,以培养创新型人才为教育主要目标,对原有的传统高等教育模式进行了改革。

  自从20世纪50年代美国施瓦布教授首先提出学生的学习过程和科学家的研究过程是一致的以来,研究性学习引起了人们的广泛关注,提出了各种相关的理论。

  ③④⑤ 然而,现在国内的高校课堂教学大部分都是基于传统教学模式:教师教学――课堂讲授为主的教学模式。

  而研究性学习,则主要是以研究问题为基础、由学生主动提出问题、并设计解决方案、解决问题,并在这一过程中获得知识、培养相应的能力,基于此中方式来展开教学与研究的教学模式在国内现有的教学理念与教学资源条件下,应用并不广泛。

  尤其是在相对较为抽象难懂的理工类课程如量子力学课程教学中应用更是甚少。

  ⑥研究生教育主要是培养学生的科研能力与素养,首先要在“研究”的培养上下功夫,而研究生课程教学正好提供了这一平台。

  在本文中主要以高等量子力学课程教学为主要研究内容,探讨如何进行课堂教学改革。

  自1978年国内恢复研究生招生制度以来,高等量子力学就被列为物理系各专业研究生必修的学位课程之一,同时高等量子力学也是报考博士研究生的考试科目之一,在原来本科阶段“量子力学”的基础上进行深化和拓展,主要是提供学生在后学研究工作中要用的一些知识和方法。

  量子理论已经成为解决物理学、生命科学、信息科学和材料科学等理论问题的关键。

  量子力学作为一门微观物理课程,与经典物理学相比,有一个很明显的差异:其中很多理论很难与日常生活和经验对应,涉及的理论、概念非常抽象,同时涉及非常多的数学知识,如(线性代数、Hilbert 空间、群论、数学物理方法和复变函数等),内容繁多,知识结构广泛,使得学生理解起来有非常大的困难,同时容易诱使学生陷入复杂繁琐的计算,而失去对量子力学学习的兴趣。

  目前,从我校物理系硕士研究生的实际情况来看,学生的量子力学知识水平参差不齐,有的学生以前没有学习过量子力学,有的学生学量子力学学时非常短,同时每个研究方向对量子力学的需求也不尽相同。

  因此,量子力学成为教师公认难教的课程、学生公认难学的课程。

  高等量子力学的教学效果将直接影响学生以后的科学研究创新能力与论文水平。

  为了培养研究生日后的科研能力,我们主要从教学内容和教学方法上进行了改革探讨。

  在教学内容上,结合本校教学时限(48学时)和本校学生的特点、学生的研究方向,主要目标是将量子力学的知识应用到其它领域,避免冗长的理论计算,激发学生的创新热情。

  重点学习量子力学的形式理论、微扰理论、对称性和守恒定律、量子散射理论等。

  在教学方法上,根据学生的知识基础和教学内容的特点,改变传统的教学方式,采用学生为主的教学方式。

  传统的教学方式主要是以教师讲授为主的灌输式、填充式,由于量子力学本身的特点,这些教学方法对量子力学的教学实效非常有限。

  一方面,一个主角的表演使得本身比较枯燥的量子力学课堂毫无生气,学生面对复杂繁琐的数学推导,思维跟不上教师的节奏,学生的学习热情下降。

  另一方面,学生本身的角色没有改变,自主学习、自主思考没有可锻炼的平台。

  教师考虑到自然科学的特点,一定要从知识的传承角度出发,这样教师要去贯彻启发式的教学方式。

  学生学一门课,学的是前人从实践中总结出来的间接知识。

  一个好的教师,应当引导学生设身处地去思考,自己是否也能根据一定的实验现象,通过分析和推理去得出前人已认识到的规律?自然科学中任何一个新的概念和原理,总是在旧概念和原理与新的实验现象的矛盾中诞生的。

  ⑦作为教师,要充分利用新旧理论的矛盾提出问题,让学生思考问题,并设计一套完成的解决方案。

  在量子力学的课堂教学中,笔者结合实际情况,主要采取的是学生讲授为主、教师辅导的方式。

  尽管学生对量子力学知识的理解有限,但是一方面可以促使学生在课前预习;另一方面学生为了准备一堂课,要查阅相关资料,这样就可以极大地提高学生查找资料的能力,拓展学生知识面。

  作为教师,从学生讲授中也可以得到一些启发,诸如学生对一个问题理解的切入点与教师理解的不同,从而教师可以调整日后的课堂教学,使得课堂教学的内容从抽象化为通俗。

  将科学研究融入到课堂教学,也是实现课堂教学改革的有效方式之一。

  研究生不仅要学习知识,更要的是做科学研究,寓教于研同样可以提高教学效果。

  在课题教学中,针对一个主题,在讲授基本知识的同时,更多的引入与之相关的前沿知识,并要求学生设计相关的问题,展开调查研究,以论文、学术报告的方式提交研究成果。

  通过此种方式,研究生的科学研究能力得到锻炼,创新思维能力得到培养,符合我们培养创新型人才的目标。

  本文结合本校研究生的实际情况以及量子力学学科特色,我们主要从从教学内容、教学方法两方面探讨高等量子力学课程的教学改革。

  随着我国高等教育的发展,研究生课程教学改革还有待进一步地深化,这样才能提升我国研究生教育的整体水平,为祖国的发展培养更多的人才,日益增强国家的综合国力。

  本文得到南华大学教学改革研究课题,2014XJG49;南华大学研究生教学改革研究项目 资助

  注释

  ① 周萍.量子力学研究性教学[J]. 中国科教创新导, 2011(17): 89-90

  ② 高芬.美国高校研究生教学中的“教”与“学”――以美国马萨诸塞大学阿默斯特分校教育学院为例[J].学位与研究生教育,2011(3):73-77.

  ③ 沈元华.设计性、研究性物理实验介绍[J].物理实验,2004(2):33-37.

  ④ 顾沛.把握研究性教学、推进课堂教学方法改革[J].中国高等教育研究,2009, (7) :3 1-33 .

  ⑤ 陈兴文,白日霞,李敏.开展研究性教学培养大学生创新能力[J].黑龙江教育:高教研究与评估,2009(1):123-125.

  ⑥ 别敦荣.大学教学方法创新与提高高等教育质量[J].清华大学教育研究,2009(30):95- 101.

  ⑦ 曾谨言. 量子力学教学与创新人才培养[J].物理,2000(29):436-438.

  工科物理专业“量子力学”教学改革【3】

  摘要:针对郑州轻工业学院量子力学教学现状,结合“量子力学”的课程特点,立足于提高学生学习积极性和培养学生科学探索精神及创新能力,简要介绍了近年来在教学内容、教学方法、教学手段和考核方法等方面进行的一些改革尝试。

  关键词:量子力学;教学改革;物理思想

  “量子力学”是20世纪物理学对科学研究和人类文明进步的两大标志性贡献之一,已经成为物理学专业及部分工科专业最重要的基础课程之一,是学习“固体物理”、“材料科学”、“材料物理与化学”和“激光原理”等课程的重要基础。

  通过这门课程的学习,学生能熟练掌握量子力学的基本概念和基本理论,具备利用量子力学理论分析问题和解决问题的能力。

  同时,这门课程对培养学生的探索精神和创新意识及科学素养亦具有十分重要的意义。

  然而,“量子力学”本身是一门非常抽象的课程,众多学生谈“量子”色变,教学效果可想而知。

  如何激发学生学习本课程的热情,充分调动学生的积极性和主动性,提高量子力学的教学水平和教学质量,已经成为摆在教师面前的重要课题。

  近年来,笔者在借鉴前人经验的基础上,结合郑州轻工业学院(以下简称“我校”)教学实际,在“量子力学”的教学内容和教学方法方面做了一些有益的改革尝试,取得了较好的效果。

  一、“量子力学”教学内容的改革

  量子力学理论与学生长期以来接触到的经典物理体系相去甚远,尤其是处理问题的思路和手段与经典物理截然不同,但它们之间又不无关联,许多量子力学中的基本概念和基本理论是类比经典物理中的相关内容得出的。

  因此,在“量子力学”教学中,一方面需要学生摒弃在经典物理学习中形成的固有观念和认识,另一方面在学习某些基本概念和基本理论时又要求学生建立起与经典物理之间的联系以形成较为直观的物理图像,这种思维上的冲突导致学生在学习这门课程时困惑不堪。

  此外,这门课程理论性较强,众多学生陷于烦琐的数学推导之中,导致学习兴趣缺失。

  针对以上教学中发现的问题,笔者对“量子力学”课程的教学内容作了一些有益的调整。

  1.理清脉络,强化知识背景

  从经典物理所面临的困难出发,到半经典半量子理论的形成,最终到量子理论的建立,对量子力学的发展脉络进行细致的、实事求是的分析,特别是对量子理论早期的概念发展有一个准确清晰的理解,弄清楚到底哪些概念和原理是已经证明为正确并得到公认的,还存在哪些不完善的地方。

  这样一方面可使学生对量子力学中基本概念和基本理论的形成和建立的科学历史背景有一深刻了解,有助于学生理清经典物理与量子理论之间的界限和区别,加深他们对这些基本概念和基本理论的理解;另一方面,可使学生对蕴藏在这一历程中的智慧火花和科学思维方法有一全面的了解,有助于培养学生的创新意识及科学素养。

  比如:对于玻尔理论,由于对量子化假设很难用已经成形的经典理论来解释,学生往往会觉得不可思议,难以理解。

  为此,在讲解这部分内容时,很有必要介绍一下玻尔理论产生的历史背景,告诉学生在玻尔的量子化假设之前就已经出现了普朗克的量子论和爱因斯坦的光量子概念,且大量关于原子光谱的实验数据也已经被掌握,之前卢瑟福提出的简单行星模型却与经典物理理论及实验事实存在严重背离。

  为了解决这些问题,玻尔理论才应运而生。

  在用量子力学求解氢原子定态波函数时,还可以通过定态波函数的概率分布图,向学生介绍所谓的玻尔轨道并不是真实存在的,只是电子出现几率比较大的区域。

  通过这样讲述,学生可以清晰地体会到玻尔理论的承上启下的作用,而又不至于将其与量子力学中的概念混为一谈。

  2.重在物理思想,压缩数学推导

  在物理学研究中,数学只是用来表述物理思想并在此基础上进行逻辑演算的工具,教师不能将深刻的物理思想淹没在复杂的数学形式之中。

  因此,在教学过程中,教师要着重于加强基本概念和基本理论的讲授,把握这些概念和理论中所蕴含的物理实质。

  对一些涉及繁难数学推导的内容,在教学中刻意忽略具体数学推导过程,着重于使学生掌握其中的思想方法。

  例如:在一维线性谐振子问题的教学中,对于数学方面的问题,只要求学生能正确写出薛定谔方程、记住其结论即可,重点放在该类问题所蕴含的物理意义及对现成结论的应用上。

  这样,学生就不会感到枯燥无味,而能始终保持较高的学习热情。

  二、教学方法改革

  传统的“填鸭式”教学法把课堂变成了教师的“一言堂”,使得学生在教学活动中始终处于被动接受地位,极大地压制了学生学习的主观能动性,十分不利于知识的获取以及对学生创新能力及科学思维的培养。

  而且,“量子力学”这门课程本身实验基础薄弱、理论性较强,物理图像不够直观,一味采取灌输式教学,学生势必感到枯燥,甚至厌烦。

  长期以往,学习积极性必然受挫,学习效果自然大打折扣。

  为了提高学生学习兴趣,激发其学习的积极性,培养其科学探索精神及创新能力,笔者在教学方法上进行了一些有益的探索。

  1.发挥学生主体作用

  除却必要的教学内容讲解外,每节课都留出一定的师生互动时间。

  教师通过创设问题情景,引导学生进行研究讨论,或者针对已讲授内容,使学生对已学内容进行复习、总结、辨析,以加深理解;或者针对未讲授内容,激发学生学习新知识的兴趣(比如,在讲授完一维无限深方势阱和一维线性谐振子这两个典型的束缚态问题后就可引导学生思考“非束缚态下微观粒子又将表现出什么样的行为”),[1]这样学生就会积极地预习下节内容;或者选择一些有代表性的习题,让学生提出不同的解决办法,培养学生的创新能力。

  对于在课堂上不能解决的问题,积极鼓励学生利用图书馆及网络资源等寻求解决,培养学生的科学探索精神。

  此外,还可使学生自由组合,挑选他们感兴趣的与课程有关的题目进行讨论、调研并完成小组论文,这一方面激发学生的自主学习积极性,另一方面使其接受初步的科研训练,一举两得。

  2.注重构建物理图像

  在实际教学中着重注意物理图像的构建,使学生对一些难以理解的概念和理论形成较为直观的印象,从而形成深刻的记忆和理解。

  例如:借助电子束衍射实验,通过三个不同的实验过程(强电子束、弱电子束及弱电子束长时间曝光),即可为实物粒子的波粒二象性构建出一幅清晰的物理图像;借助电子束衍射实验图像,再以光波类比电子波,即可凝练出波函数的统计解释;[2]借助电子双缝衍射实验图像,可使学生更易接受和理解态叠加原理;借助解析几何中的坐标系,可很好地为学生建立起表象的物理图像。

  尽管这其中光波和电子波、坐标系和表象这些概念之间有本质上的区别,但借助这些学生已经熟知和深刻理解的概念,可使学生非常容易地接受和理解量子力学中难以言明的概念和理论,同时,也可使学生掌握这种物理图像的构建能力,对培养学生的创新思维具有非常积极地作用。

  三、教学手段和考核方式改革

  1.课程教学采用多种先进的教学方式

  如安排小组讨论课,对难于理解的概念和规律进行讨论。

  先是各小组内讨论,再是小组间辩论,最后老师对各小组讨论和辩论的观点进行评述和指正。

  例如,在讲到微观粒子的波函数时,有的学生认为是全部粒子组成波函数,有的学生认为是经典物理学的波。

  这些问题的讨论激发了学生的求知欲望,从而进一步激发了学生对一些不易理解的概念和量子原理进行深入理解,直至最后充分理解这些内容。

  另外课程作业布置小论文,邀请国内外专家开展系列量子力学讲座等都是不错的方式。

  2.坚持研究型教学方式[3]

  把课程教学和科研相结合,在教学过程中针对教学内容,吸取科研中的研究成果,通过结合最新的科研动态,向学生讲授在相关领域的应用以培养学生学习兴趣。

  在量子力学诞生后,作为现代物理学的两大支柱之一的现代物理学的每一个分支及相关的边缘学科都离不开量子力学这个基础,量子理论与其他学科的交叉越来越多。

  例如:基本粒子、原子核、原子、分子、凝聚态物理到中子星、黑洞各个层次的研究以量子力学为基础;量子力学在通信和纳米技术中的应用;量子理论在生物学中的应用;量子力学与正在研究的量子计算机的关系等,在教学中适当地穿插这些知识,扩大学生的知识面,消除学生对量子力学的片面认识,提高学生学习兴趣和主动性。

  3.利用量子力学课程将人文教育与专业教学相结合

  量子力学从诞生到发展的物理学史所包含的创新思维是迄今为止哪一门学科都难以比拟的。

  在19世纪末至20世纪初,经典物理学晴空万里,然而黑体辐射、光电效应、原子光谱等物理现象的实验结果严重冲击经典物理学理论,让经典物理学陷入危机四伏的境地。

  1900年,德国物理学家普朗克创造性地引入了能量子的概念,成功地解释了黑体辐射现象,量子概念诞生。

  1905年,爱因斯坦进一步完善了量子化观念,指出能量不仅在吸收和辐射时是不连续的(普朗克假设),而且在物质相互作用中也是不连续的。

  1913年,玻尔将量子化概念引入到原子中,成功解释了有近30年历史的巴尔末经验光谱公式。

  泡利突破玻尔半经典、半量子论的局限,给予了令玻尔理论不安的反常塞曼效应以合理解释。

  1924年,德布罗意突破普朗克能量子观念提出微观粒子具有波粒二象性,开始与经典理论分庭抗礼。

  [4]和学生一起重温量子力学史的发展之路,在教学过程中展现量子力学数学形式之美,使学生在科学海洋中得到美的享受,从精神上熏陶他们的创新精神。

  4.考试方式改革

  在本课程的教学中采用了教考分离,通过小考题的形式复习章节内容,根据学生的实际水平适当辅导答疑,注重学生对量子力学基础知识理解的考核。

  对于评价系统的建立,其中平时成绩(包括作业、讨论、综合表现等)占30%,期末考试占70%。

  从实施的效果来看,督促了学生的学习,收到了较好的效果,受到学生的欢迎。

  四、结论

  通过近年来的改革尝试,我校的“量子力学”教学水平稳步提高,加速了专业建设。

  2009年,我校“量子力学”被评为校级精品课程,教学改革成果初现。

  然而,关于这门课程的教学仍存在不少问题,如教学手段单一、与生产实践结合不够紧密等等,这些都需要教师在今后教学中进一步改进。

  参考文献:

  [1]周世勋.量子力学教程(第二版)[M].北京:高等教育出版社,2009.

  [2]吕增建.从量子力学的建立看类比思维的创新作用[J].力学与实践,2009,(4).

  [3]邹艳.浅谈量子力学的教学改革[J].物理与工程,2009,(4).

  [4]王祥高,等.物理学专业量子力学教学探讨[J].广西大学学报(哲学社会科学版),2011,(S1).

【本科生量子力学教学改革】相关文章:

关于工科物理专业“量子力学”教学改革探析10-05

经典理论与量子力学的联系10-07

量子力学的新应用10-07

“量子力学”教学浅谈10-26

量子力学对称假说研究10-07

量子力学教学方法10-07

变分法在量子力学的应用10-05

量子力学中的波动学10-05

探究物理专业中量子力学10-26